ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploiting routinely collected severe case data to monitor and predict influenza outbreaks

234   0   0.0 ( 0 )
 نشر من قبل Alice Corbella
 تاريخ النشر 2017
والبحث باللغة English
 تأليف Alice Corbella




اسأل ChatGPT حول البحث

Influenza remains a significant burden on health systems. Effective responses rely on the timely understanding of the magnitude and the evolution of an outbreak. For monitoring purposes, data on severe cases of influenza in England are reported weekly to Public Health England. These data are both readily available and have the potential to provide valuable information to estimate and predict the key transmission features of seasonal and pandemic influenza. We propose an epidemic model that links the underlying unobserved influenza transmission process to data on severe influenza cases. Within a Bayesian framework, we infer retrospectively the parameters of the epidemic model for each seasonal outbreak from 2012 to 2015, including: the effective reproduction number; the initial susceptibility; the probability of admission to intensive care given infection; and the effect of school closure on transmission. The model is also implemented in real time to assess whether early forecasting of the number of admission to intensive care is possible. Our model of admissions data allows reconstruction of the underlying transmission dynamics revealing: increased transmission during the season 2013/14 and a noticeable effect of Christmas school holiday on disease spread during season 2012/13 and 2014/15. When information on the initial immunity of the population is available, forecasts of the number of admissions to intensive care can be substantially improved. Readily available severe case data can be effectively used to estimate epidemiological characteristics and to predict the evolution of an epidemic, crucially allowing real-time monitoring of the transmission and severity of the outbreak.



قيم البحث

اقرأ أيضاً

356 - Cuihua Shen 2020
Can public social media data be harnessed to predict COVID-19 case counts? We analyzed approximately 15 million COVID-19 related posts on Weibo, a popular Twitter-like social media platform in China, from November 1, 2019 to March 31, 2020. We develo ped a machine learning classifier to identify sick posts, which are reports of ones own and other peoples symptoms and diagnosis related to COVID-19. We then modeled the predictive power of sick posts and other COVID-19 posts on daily case counts. We found that reports of symptoms and diagnosis of COVID-19 significantly predicted daily case counts, up to 14 days ahead of official statistics. But other COVID-19 posts did not have similar predictive power. For a subset of geotagged posts (3.10% of all retrieved posts), we found that the predictive pattern held true for both Hubei province and the rest of mainland China, regardless of unequal distribution of healthcare resources and outbreak timeline. Researchers and disease control agencies should pay close attention to the social media infosphere regarding COVID-19. On top of monitoring overall search and posting activities, it is crucial to sift through the contents and efficiently identify true signals from noise.
In the context of a pandemic like COVID-19, and until most people are vaccinated, proactive testing and interventions have been proved to be the only means to contain the disease spread. Recent academic work has offered significant evidence in this r egard, but a critical question is still open: Can we accurately identify all new infections that happen every day, without this being forbiddingly expensive, i.e., using only a fraction of the tests needed to test everyone everyday (complete testing)? Group testing offers a powerful toolset for minimizing the number of tests, but it does not account for the time dynamics behind the infections. Moreover, it typically assumes that people are infected independently, while infections are governed by community spread. Epidemiology, on the other hand, does explore time dynamics and community correlations through the well-established continuous-time SIR stochastic network model, but the standard model does not incorporate discrete-time testing and interventions. In this paper, we introduce a discrete-time SIR stochastic block model that also allows for group testing and interventions on a daily basis. Our model can be regarded as a discrete version of the continuous-time SIR stochastic network model over a specific type of weighted graph that captures the underlying community structure. We analyze that model w.r.t. the minimum number of group tests needed everyday to identify all infections with vanishing error probability. We find that one can leverage the knowledge of the community and the model to inform nonadaptive group testing algorithms that are order-optimal, and therefore achieve the same performance as complete testing using a much smaller number of tests.
A mathematical model for the COVID-19 pandemic spread, which integrates age-structured Susceptible-Exposed-Infected-Recovered-Deceased dynamics with real mobile phone data accounting for the population mobility, is presented. The dynamical model adju stment is performed via Approximate Bayesian Computation. Optimal lockdown and exit strategies are determined based on nonlinear model predictive control, constrained to public-health and socio-economic factors. Through an extensive computational validation of the methodology, it is shown that it is possible to compute robust exit strategies with realistic reduced mobility values to inform public policy making, and we exemplify the applicability of the methodology using datasets from England and France. Code implementing the described experiments is available at https://github.com/OptimalLockdown.
In this paper we present ACEMod, an agent-based modelling framework for studying influenza epidemics in Australia. The simulator is designed to analyse the spatiotemporal spread of contagion and influenza spatial synchrony across the nation. The indi vidual-based epidemiological model accounts for mobility (worker and student commuting) patterns and human interactions derived from the 2006 Australian census and other national data sources. The high-precision simulation comprises 19.8 million stochastically generated software agents and traces the dynamics of influenza viral infection and transmission at several scales. Using this approach, we are able to synthesise epidemics in Australia with varying outbreak locations and severity. For each scenario, we investigate the spatiotemporal profiles of these epidemics, both qualitatively and quantitatively, via incidence curves, prevalence choropleths, and epidemic synchrony. This analysis exemplifies the nature of influenza pandemics within Australia and facilitates future planning of effective intervention, mitigation and crisis management strategies.
100 - Qibin Duan , Jinran Wu , Gaojun Wu 2020
The coronavirus disease 2019 (COVID-19) had caused more that 8 million infections as of middle June 2020. Recently, Brazil has become a new epicentre of COVID-19, while India and African region are potential epicentres. This study aims to predict the inflection point and outbreak size of these new/potential epicentres at the early phase of the epidemics by borrowing information from more `mature curves from other countries. We modeled the cumulative cases to the well-known sigmoid growth curves to describe the epidemic trends under the mixed-effect models and using the four-parameter logistic model after power transformations. African region is predicted to have the largest total outbreak size of 3.9 million cases (2.2 to 6 million), and the inflection will come around September 13, 2020. Brazil and India are predicted to have a similar final outbreak size of around 2.5 million cases (1.1 to 4.3 million), with the inflection points arriving June 23 and July 26, respectively. We conclude in Brazil, India, and African the epidemics of COVI19 have not yet passed the inflection points; these regions potentially can take over USA in terms of outbreak size
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا