ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient identification of infected sub-population

78   0   0.0 ( 0 )
 نشر من قبل Anze Slosar
 تاريخ النشر 2020
والبحث باللغة English
 تأليف Anv{z}e Slosar




اسأل ChatGPT حول البحث

When testing for infections, the standard method is to test each subject individually. If testing methodology is such that samples from multiple subjects can be efficiently combined and tested at once, yielding a positive results if any one subject in the subgroup is positive, then one can often identify the infected sub-population with a considerably lower number of tests compared to the number of test subjects. We present two such methods that allow an increase in testing efficiency (in terms of total number of test performed) by a factor of $approx$ 10 if population infection rate is $10^{-2}$ and a factor of $approx$50 when it is $10^{-3}$. Such methods could be useful when testing large fractions of the total population, as will be perhaps required during the current coronavirus pandemic.



قيم البحث

اقرأ أيضاً

In the context of a pandemic like COVID-19, and until most people are vaccinated, proactive testing and interventions have been proved to be the only means to contain the disease spread. Recent academic work has offered significant evidence in this r egard, but a critical question is still open: Can we accurately identify all new infections that happen every day, without this being forbiddingly expensive, i.e., using only a fraction of the tests needed to test everyone everyday (complete testing)? Group testing offers a powerful toolset for minimizing the number of tests, but it does not account for the time dynamics behind the infections. Moreover, it typically assumes that people are infected independently, while infections are governed by community spread. Epidemiology, on the other hand, does explore time dynamics and community correlations through the well-established continuous-time SIR stochastic network model, but the standard model does not incorporate discrete-time testing and interventions. In this paper, we introduce a discrete-time SIR stochastic block model that also allows for group testing and interventions on a daily basis. Our model can be regarded as a discrete version of the continuous-time SIR stochastic network model over a specific type of weighted graph that captures the underlying community structure. We analyze that model w.r.t. the minimum number of group tests needed everyday to identify all infections with vanishing error probability. We find that one can leverage the knowledge of the community and the model to inform nonadaptive group testing algorithms that are order-optimal, and therefore achieve the same performance as complete testing using a much smaller number of tests.
Network-based interventions against epidemic spread are most powerful when the full network structure is known. However, in practice, resource constraints require decisions to be made based on partial network information. We investigated how the accu racy of network data available at individual and village levels affected network-based vaccination effectiveness. We simulated a Susceptible-Infected-Recovered process on empirical social networks from 75 villages. First, we used regression to predict the percentage of individuals ever infected based on village-level network. Second, we simulated vaccinating 10 percent of each of the 75 empirical village networks at baseline, selecting vaccinees through one of five network-based approaches: random individuals; random contacts of random individuals; random high-degree individuals; highest degree individuals; or most central individuals. The first three approaches require only sample data; the latter two require full network data. We also simulated imposing a limit on how many contacts an individual can nominate (Fixed Choice Design, FCD), which reduces the data collection burden but generates only partially observed networks. We found mean and standard deviation of the degree distribution to strongly predict cumulative incidence. In simulations, the Nomination method reduced cumulative incidence by one-sixth compared to Random vaccination; full network methods reduced infection by two-thirds. The High Degree approach had intermediate effectiveness. Surprisingly, FCD truncating individuals degrees at three was as effective as using complete networks. Using even partial network information to prioritize vaccines at either the village or individual level substantially improved epidemic outcomes. Such approaches may be feasible and effective in outbreak settings, and full ascertainment of network structure may not be required.
Empirical evidence shows that the rate of irregular usage of English verbs exhibits discontinuity as a function of their frequency: the most frequent verbs tend to be totally irregular. We aim to qualitatively understand the origin of this feature by studying simple agent--based models of language dynamics, where each agent adopts an inflectional state for a verb and may change it upon interaction with other agents. At the same time, agents are replaced at some rate by new agents adopting the regular form. In models with only two inflectional states (regular and irregular), we observe that either all verbs regularize irrespective of their frequency, or a continuous transition occurs between a low frequency state where the lemma becomes fully regular, and a high frequency one where both forms coexist. Introducing a third (mixed) state, wherein agents may use either form, we find that a third, qualitatively different behavior may emerge, namely, a discontinuous transition in frequency. We introduce and solve analytically a very general class of three--state models that allows us to fully understand these behaviors in a unified framework. Realistic sets of interaction rules, including the well-known Naming Game (NG) model, result in a discontinuous transition, in agreement with recent empirical findings. We also point out that the distinction between speaker and hearer in the interaction has no effect on the collective behavior. The results for the general three--state model, although discussed in terms of language dynamics, are widely applicable.
Currently, the high-precision estimation of nonlinear parameters such as Gini indices, low-income proportions or other measures of inequality is particularly crucial. In the present paper, we propose a general class of estimators for such parameters that take into account univariate auxiliary information assumed to be known for every unit in the population. Through a nonparametric model-assisted approach, we construct a unique system of survey weights that can be used to estimate any nonlinear parameter associated with any study variable of the survey, using a plug-in principle. Based on a rigorous functional approach and a linearization principle, the asymptotic variance of the proposed estimators is derived, and variance estimators are shown to be consistent under mild assumptions. The theory is fully detailed for penalized B-spline estimators together with suggestions for practical implementation and guidelines for choosing the smoothing parameters. The validity of the method is demonstrated on data extracted from the French Labor Force Survey. Point and confidence intervals estimation for the Gini index and the low-income proportion are derived. Theoretical and empirical results highlight our interest in using a nonparametric approach versus a parametric one when estimating nonlinear parameters in the presence of auxiliary information.
Physical contacts result in the spread of various phenomena such as viruses, gossips, ideas, packages and marketing pamphlets across a population. The spread depends on how people move and co-locate with each other, or their mobility patterns. How fa r such phenomena spread has significance for both policy making and personal decision making, e.g., studying the spread of COVID-19 under different intervention strategies such as wearing a mask. In practice, mobility patterns of an entire population is never available, and we usually have access to location data of a subset of individuals. In this paper, we formalize and study the problem of estimating the spread of a phenomena in a population, given that we only have access to sub-samples of location visits of some individuals in the population. We show that simple solutions such as estimating the spread in the sub-sample and scaling it to the population, or more sophisticated solutions that rely on modeling location visits of individuals do not perform well in practice, the former because it ignores contacts between unobserved individuals and sampled ones and the latter because it yields inaccurate modeling of co-locations. Instead, we directly model the co-locations between the individuals. We introduce PollSpreader and PollSusceptible, two novel approaches that model the co-locations between individuals using a contact network, and infer the properties of the contact network using the subsample to estimate the spread of the phenomena in the entire population. We show that our estimates provide an upper bound and a lower bound on the spread of the disease in expectation. Finally, using a large high-resolution real-world mobility dataset, we experimentally show that our estimates are accurate, while other methods that do not correctly account for co-locations between individuals result in wrong observations (e.g, premature herd-immunity).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا