ﻻ يوجد ملخص باللغة العربية
Bayesian persuasion studies how an informed sender should partially disclose information to influence the behavior of a self-interested receiver. Classical models make the stringent assumption that the sender knows the receivers utility. This can be relaxed by considering an online learning framework in which the sender repeatedly faces a receiver of an unknown, adversarially selected type. We study, for the first time, an online Bayesian persuasion setting with multiple receivers. We focus on the case with no externalities and binary actions, as customary in offline models. Our goal is to design no-regret algorithms for the sender with polynomial per-iteration running time. First, we prove a negative result: for any $0 < alpha leq 1$, there is no polynomial-time no-$alpha$-regret algorithm when the senders utility function is supermodular or anonymous. Then, we focus on the case of submodular senders utility functions and we show that, in this case, it is possible to design a polynomial-time no-$(1 - frac{1}{e})$-regret algorithm. To do so, we introduce a general online gradient descent scheme to handle online learning problems with a finite number of possible loss functions. This requires the existence of an approximate projection oracle. We show that, in our setting, there exists one such projection oracle which can be implemented in polynomial time.
We study a Bayesian persuasion setting with binary actions (adopt and reject) for Receiver. We examine the following question - how well can Sender perform, in terms of persuading Receiver to adopt, when ignorant of Receivers utility? We take a robus
Persuasion studies how an informed principal may influence the behavior of agents by the strategic provision of payoff-relevant information. We focus on the fundamental multi-receiver model by Arieli and Babichenko (2019), in which there are no inter
We address Bayesian persuasion between a sender and a receiver with state-dependent quadratic cost measures for general classes of distributions. The receiver seeks to make mean-square-error estimate of a state based on a signal sent by the sender wh
Bayesian persuasion is the study of information sharing policies among strategic agents. A prime example is signaling in online ad auctions: what information should a platform signal to an advertiser regarding a user when selling the opportunity to a
We study an information-structure design problem (a.k.a. persuasion) with a single sender and multiple receivers with actions of a priori unknown types, independently drawn from action-specific marginal distributions. As in the standard Bayesian pers