ﻻ يوجد ملخص باللغة العربية
We study an information-structure design problem (a.k.a. persuasion) with a single sender and multiple receivers with actions of a priori unknown types, independently drawn from action-specific marginal distributions. As in the standard Bayesian persuasion model, the sender has access to additional information regarding the action types, which she can exploit when committing to a (noisy) signaling scheme through which she sends a private signal to each receiver. The novelty of our model is in considering the case where the receivers interact in a sequential game with imperfect information, with utilities depending on the game outcome and the realized action types. After formalizing the notions of ex ante and ex interim persuasiveness (which differ in the time at which the receivers commit to following the senders signaling scheme), we investigate the continuous optimization problem of computing a signaling scheme which maximizes the senders expected revenue. We show that computing an optimal ex ante persuasive signaling scheme is NP-hard when there are three or more receivers. In contrast with previous hardness results for ex interim persuasion, we show that, for games with two receivers, an optimal ex ante persuasive signaling scheme can be computed in polynomial time thanks to a novel algorithm based on the ellipsoid method which we propose.
In this paper, we present exploitability descent, a new algorithm to compute approximate equilibria in two-player zero-sum extensive-form games with imperfect information, by direct policy optimization against worst-case opponents. We prove that when
Game tree search algorithms such as minimax have been used with enormous success in turn-based adversarial games such as Chess or Checkers. However, such algorithms cannot be directly applied to real-time strategy (RTS) games because a number of reas
Security Games employ game theoretical tools to derive resource allocation strategies in security domains. Recent works considered the presence of alarm systems, even suffering various forms of uncertainty, and showed that disregarding alarm signals
We focus on adversarial patrolling games on arbitrary graphs, where the Defender can control a mobile resource, the targets are alarmed by an alarm system, and the Attacker can observe the actions of the mobile resource of the Defender and perform di
We provide, to the best of our knowledge, the first computational study of extensive-form adversarial team games. These games are sequential, zero-sum games in which a team of players, sharing the same utility function, faces an adversary. We define