ﻻ يوجد ملخص باللغة العربية
We address Bayesian persuasion between a sender and a receiver with state-dependent quadratic cost measures for general classes of distributions. The receiver seeks to make mean-square-error estimate of a state based on a signal sent by the sender while the sender signals strategically in order to control the receivers estimate in a certain way. Such a scheme could model, e.g., deception and privacy, problems in multi-agent systems. Existing solution concepts are not viable since here the receiver has continuous action space. We show that for finite state spaces, optimal signaling strategies can be computed through an equivalent linear optimization problem over the cone of completely positive matrices. We then establish its strong duality to a copositive program. To exemplify the effectiveness of this equivalence result, we adopt sequential polyhedral approximation of completely-positive cones and analyze its performance numerically. We also quantify the approximation error for a quantized version of a continuous distribution and show that a semi-definite program relaxation of the equivalent problem could be a benchmark lower bound for the senders cost for large state spaces.
We study a Bayesian persuasion setting with binary actions (adopt and reject) for Receiver. We examine the following question - how well can Sender perform, in terms of persuading Receiver to adopt, when ignorant of Receivers utility? We take a robus
Bayesian persuasion studies how an informed sender should partially disclose information to influence the behavior of a self-interested receiver. Classical models make the stringent assumption that the sender knows the receivers utility. This can be
Persuasion studies how an informed principal may influence the behavior of agents by the strategic provision of payoff-relevant information. We focus on the fundamental multi-receiver model by Arieli and Babichenko (2019), in which there are no inter
Bayesian persuasion is the study of information sharing policies among strategic agents. A prime example is signaling in online ad auctions: what information should a platform signal to an advertiser regarding a user when selling the opportunity to a
A standard result from auction theory is that bidding truthfully in a second price auction is a weakly dominant strategy. The result, however, does not apply in the presence of Cost Per Action (CPA) constraints. Such constraints exist, for instance,