ﻻ يوجد ملخص باللغة العربية
We prove Taylor scaling for dislocation lines characterized by line-tension and moving by curvature under the action of an applied shear stress in a plane containing a random array of obstacles. Specifically, we show--in the sense of optimal scaling--that the critical applied shear stress for yielding, or percolation-like unbounded motion of the dislocation, scales in proportion to the square root of the obstacle density. For sufficiently small obstacle densities, Taylor scaling dominates the linear-scaling that results from purely energetic considerations and, therefore, characterizes the dominant rate-limiting mechanism in that regime.
We numerically investigate the transport of a suspended overdamped Brownian particle which is driven through a two-dimensional rectangular array of circular obstacles with finite radius. Two limiting cases are considered in detail, namely, when the c
Pinning of dislocations at nanosized obstacles like precipitates, voids and bubbles, is a crucial mechanism in the context of phenomena like hardening and creep. The interaction between such an obstacle and a dislocation is often explored at fundamen
We provide a new proof of convergence to motion by mean curvature (MMC) for the Merriman-Bence-Osher (MBO) thresholding algorithm. The proof is elementary and does not rely on maximum principle for the scheme. The strategy is to construct a natural a
We consider the evolution of fronts by mean curvature in the presence of obstacles. We construct a weak solution to the flow by means of a variational method, corresponding to an implicit time-discretization scheme. Assuming the regularity of the obs
We consider the propagation of acoustic waves at a given wavenumber in a waveguide which is unbounded in one direction. We explain how to construct penetrable obstacles characterized by a physical coefficient $rho$ which are invisible in various ways