ترغب بنشر مسار تعليمي؟ اضغط هنا

A continuation method for building invisible obstacles in waveguides

85   0   0.0 ( 0 )
 نشر من قبل Lucas Chesnel
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the propagation of acoustic waves at a given wavenumber in a waveguide which is unbounded in one direction. We explain how to construct penetrable obstacles characterized by a physical coefficient $rho$ which are invisible in various ways. In particular, we focus our attention on invisibility in reflection (the reflection matrix is zero), invisibility in reflection and transmission (the scattering matrix is the same as if there were no obstacle) and relative invisibility (two different obstacles have the same scattering matrix). To study these problems, we use a continuation method which requires to compute the scattering matrix $mathbb{S}(rho)$ as well as its differential with respect to the material index $dmathbb{S}(rho)$. The justification of the method also needs for the proof of abstract results of ontoness of well-chosen functionals constructed from the terms of $dmathbb{S}(rho)$. We provide a complete proof of the results in monomode regime when the wavenumber is such that only one mode can propagate. And we give all the ingredients to implement the method in multimode regime. We end the article by presenting numerical results to illustrate the analysis.

قيم البحث

اقرأ أيضاً

The multilinear Pagerank model [Gleich, Lim and Yu, 2015] is a tensor-based generalization of the Pagerank model. Its computation requires solving a system of polynomial equations that contains a parameter $alpha in [0,1)$. For $alpha approx 1$, this computation remains a challenging problem, especially since the solution may be non-unique. Extrapolation strategies that start from smaller values of $alpha$ and `follow the solution by slowly increasing this parameter have been suggested; however, there are known cases where these strategies fail, because a globally continuous solution curve cannot be defined as a function of $alpha$. In this paper, we improve on this idea, by employing a predictor-corrector continuation algorithm based on a more general representation of the solutions as a curve in $mathbb{R}^{n+1}$. We prove several global properties of this curve that ensure the good behavior of the algorithm, and we show in our numerical experiments that this method is significantly more reliable than the existing alternatives.
We propose and analyze an optimal mass transport method for a random genetic drift problem driven by a Moran process under weak-selection. The continuum limit, formulated as a reaction-advection-diffusion equation known as the Kimura equation, inheri ts degenerate diffusion from the discrete stochastic process that conveys to the blow-up into Dirac-delta singularities hence brings great challenges to both the analytical and numerical studies. The proposed numerical method can quantitatively capture to the fullest possible extent the development of Dirac-delta singularities for genetic segregation on one hand, and preserves several sets of biologically relevant and computationally favored properties of the random genetic drift on the other. Moreover, the numerical scheme exponentially converges to the unique numerical stationary state in time at a rate independent of the mesh size up to a mesh error. Numerical evidence is given to illustrate and support these properties, and to demonstrate the spatio-temporal dynamics of random generic drift.
We propose a new algorithm for numerical path tracking in polynomial homotopy continuation. The algorithm is `robust in the sense that it is designed to prevent path jumping and in many cases, it can be used in (only) double precision arithmetic. It is based on an adaptive stepsize predictor that uses Pade techniques to detect local difficulties for function approximation and danger for path jumping. We show the potential of the new path tracking algorithm through several numerical examples and compare with existing implementations.
In this paper, we propose a numerical method to solve the classic $L^2$-optimal transport problem. Our algorithm is based on use of multiple shooting, in combination with a continuation procedure, to solve the boundary value problem associated to the transport problem. We exploit the viewpoint of Wasserstein Hamiltonian flow with initial and target densities, and our method is designed to retain the underlying Hamiltonian structure. Several numerical examples are presented to illustrate the performance of the method.
In this paper, a perfectly matched layer (PML) method is proposed to solve the time-domain electromagnetic scattering problems in 3D effectively. The PML problem is defined in a spherical layer and derived by using the Laplace transform and real coor dinate stretching in the frequency domain. The well-posedness and the stability estimate of the PML problem are first proved based on the Laplace transform and the energy method. The exponential convergence of the PML method is then established in terms of the thickness of the layer and the PML absorbing parameter. As far as we know, this is the first convergence result for the time-domain PML method for the three-dimensional Maxwell equations. Our proof is mainly based on the stability estimates of solutions of the truncated PML problem and the exponential decay estimates of the stretched dyadic Greens function for the Maxwell equations in the free space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا