ترغب بنشر مسار تعليمي؟ اضغط هنا

Convergence of Diffusion Generated Motion to Motion by Mean Curvature

91   0   0.0 ( 0 )
 نشر من قبل Drew Swartz
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide a new proof of convergence to motion by mean curvature (MMC) for the Merriman-Bence-Osher (MBO) thresholding algorithm. The proof is elementary and does not rely on maximum principle for the scheme. The strategy is to construct a natural ansatz of the solution and then estimate the error. The proof thus also provides a convergence rate. Only some weak integrability assumptions of the heat kernel, but not its positivity, is used. Currently the result is proved in the case when smooth and classical solution of MMC exists.



قيم البحث

اقرأ أيضاً

We analyze the continuum limit of a thresholding algorithm for motion by mean curvature of one dimensional interfaces in various space-time discrete regimes. The algorithm can be viewed as a time-splitting scheme for the Allen-Cahn equation which is a typical model for the motion of materials phase boundaries. Our results extend the existing statements which are applicable mostly in semi-discrete (continuous in space and discrete in time) settings. The motivations of this work are twofolds: to investigate the interaction between multiple small parameters in nonlinear singularly perturbed problems, and to understand the anisotropy in curvature for interfaces in spatially discrete environments. In the current work, the small parameters are the the spatial and temporal discretization step sizes $triangle x = h$ and $triangle t = tau$. We have identified the limiting description of the interfacial velocity in the (i) sub-critical ($h ll tau$), (ii) critical ($h = O(tau)$), and (iii) super-critical ($h gg tau$) regimes. The first case gives the classical isotropic motion by mean curvature, while the second produces intricate pinning and de-pinning phenomena and anisotropy in the velocity function of the interface. The last case produces no motion (complete pinning).
There are a number of situations in which rescaled interacting particle systems have been shown to converge to a reaction diffusion equation (RDE) with a bistable reaction term. These RDEs have traveling wave solutions. When the speed of the wave is nonzero, block constructions have been used to prove the existence or nonexistence of nontrivial stationary distributions. Here, we follow the approach in a paper by Etheridge, Freeman, and Pennington to show that in a wide variety of examples when the RDE limit has a bistable reaction term and traveling waves have speed 0, one can run time faster and further rescale space to obtain convergence to motion by mean curvature. This opens up the possibility of proving that the sexual reproduction model with fast stirring has a discontinuous phase transition, and that in Region 2 of the phase diagram for the nonlinear voter model studied by Molofsky et al there were two nontrivial stationary distributions.
Self-generated gradients have atttracted a lot of attention in the recent biological literature. It is considered as a robust strategy for a group of cells to find its way during a long journey. This note is intended to discuss various scenarios for modeling traveling waves of cells that constantly deplete a chemical cue, and so create their own signaling gradient all along the way. We begin with one famous model by Keller and Segel for bacterial chemotaxis. We present the model and the construction of the traveling wave solutions. We also discuss the limitation of this approach, and review some subsequent work addressing stability issues. Next, we review two relevant extensions, which are supported by biological experiments. They both admit traveling wave solutions with an explicit value for the wave speed. We conclude by discussing some open problems and perspectives, and particularly a striking mechanism of speed determinacy occurring at the back of the wave. All the results presented in this note are illustrated by numerical simulations.
122 - Tim Laux , Thilo Simon 2016
We present a convergence result for solutions of the vector-valued Allen-Cahn Equation. In the spirit of the work of Luckhaus and Sturzenhecker we establish convergence towards a distributional formulation of multi-phase mean-curvature flow using set s of finite perimeter. Like their result, ours relies on the assumption that the time-integrated energies of the approximations converge to those of the limit. Furthermore, we apply our proof to two variants of the equation, incorporating external forces and a volume constraint.
185 - Denys Dutykh 2020
In the vast literature on tsunami research, few articles have been devoted to energy issues. A theoretical investigation on the energy of waves generated by bottom motion is performed here. We start with the full incompressible Euler equations in the presence of a free surface and derive both dispersive and non-dispersive shallow-water equations with an energy equation. It is shown that dispersive effects only appear at higher order in the energy budget. Then we solve the Cauchy-Poisson problem of tsunami generation for the linearized water wave equations. Exchanges between potential and kinetic energies are clearly revealed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا