ﻻ يوجد ملخص باللغة العربية
Pinning of dislocations at nanosized obstacles like precipitates, voids and bubbles, is a crucial mechanism in the context of phenomena like hardening and creep. The interaction between such an obstacle and a dislocation is often explored at fundamental level by means of analytical tools, atomistic simulations and finite element methods. Nevertheless, the information extracted from such studies has not been utilized to its maximum extent on account of insufficient information about the underlying statistics of this process comprising a large number of dislocations and obstacles in a system. Here we propose a new statistical approach, where the statistics of pinning of dislocations by idealized spherical obstacles is explored by taking into account the generalized size-distribution of the obstacles along with the dislocation density within a three-dimensional framework. The application of this approach, in combination with the knowledge of fundamental dislocation-obstacle interactions, has successfully been demonstrated for dislocation pinning at nanovoids in neutron irradiated type 316-stainless steel in regard to both conservative and non-conservative motions of dislocations.
The current interest in compositionally complex alloys including so called high entropy alloys has caused renewed interest in the general problem of solute hardening. It has been suggested that this problem can be addressed by treating the alloy as a
In this letter we propose a model that demonstrates the effect of free surface on the lattice resistance experienced by a moving dislocation in nanodimensional systems. This effect manifests in an enhanced velocity of dislocation due to the proximity
Solute segregation at twin boundaries in Mg has been widely investigated, yet this phenomenon has not been studied at the equally important basal-prismatic interfaces. To fill this critical gap, this work investigates the segregation behavior of Y at
We employ the methods of atomistic simulation to investigate the climb of edge dislocation at nanovoids by analyzing the energetics of the underlying mechanism. A novel simulation strategy has been demonstrated to estimate the release of surface ener
Tensile tests were carried out by deforming polycrystalline samples of substitutional Al-2.5%Mg alloy at room temperature for a range of strain rates. The Portevin-Le Chatelier (PLC) effect was observed throughout the strain rate regime. The deformat