ترغب بنشر مسار تعليمي؟ اضغط هنا

Formation of an electron-phonon bi-fluid in bulk antimony

65   0   0.0 ( 0 )
 نشر من قبل Alexandre Jaoui Dr
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The flow of charge and entropy in solids usually depends on collisions decaying quasiparticle momentum. Hydrodynamic corrections can emerge, however, if most collisions among quasiparticles conserve momentum and the mean-free-path approaches the sample dimensions. Here, through a study of electrical and thermal transport in antimony (Sb) crystals of various sizes, we document the emergence of a two-component fluid of electrons and phonons. Lattice thermal conductivity, dominated by electron scattering down to 0.1 K, displays prominent quantum oscillations. The Dingle mobility does not vary despite an order-of-magnitude change in transport mobility. Electrical resistivity shows an aborted Bloch-Gruneisen behavior, implying momentum conservation of electron-phonon collisions. Taken together, these results draw a consistent picture of a bi-fluid whose shortest intrinsic time scale is defined by momentum-conserving electron-phonon collisions.



قيم البحث

اقرأ أيضاً

We calculate the scrambling rate $lambda_L$ and the butterfly velocity $v_B$ associated with the growth of quantum chaos for a solvable large-$N$ electron-phonon system. We study a temperature regime in which the electrical resistivity of this system exceeds the Mott-Ioffe-Regel limit and increases linearly with temperature - a sign that there are no long-lived charged quasiparticles - although the phonons remain well-defined quasiparticles. The long-lived phonons determine $lambda_L$, rendering it parametrically smaller than the theoretical upper-bound $lambda_L ll lambda_{max}=2pi T/hbar$. Significantly, the chaos properties seem to be intrinsic - $lambda_L$ and $v_B$ are the same for electronic and phononic operators. We consider two models - one in which the phonons are dispersive, and one in which they are dispersionless. In either case, we find that $lambda_L$ is proportional to the inverse phonon lifetime, and $v_B$ is proportional to the effective phonon velocity. The thermal and chaos diffusion constants, $D_E$ and $D_Lequiv v_B^2/lambda_L$, are always comparable, $D_E sim D_L$. In the dispersive phonon case, the charge diffusion constant $D_C$ satisfies $D_Lgg D_C$, while in the dispersionless case $D_L ll D_C$.
We use the nonequilibrium dynamical mean field theory formalism to compute the equilibrium and nonequilibrium resonant inelastic X-ray scattering (RIXS) signal of a strongly interacting fermionic lattice model with a coupling of dispersionless phonon s to the total charge on a given site. In the atomic limit, this model produces phonon subbands in the spectral function, but not in the RIXS signal. Electron hopping processes however result in phonon-related modifications of the charge excitation peak. We discuss the equilibrium RIXS spectra and the characteristic features of nonequilibrium states induced by photo-doping and by the application of a static electric field. The latter produces features related to Wannier-Stark states, which are dressed with phonon sidebands. Thanks to the effect of field-induced localization, the phonon features can be clearly resolved even in systems with weak electron-phonon coupling.
Understanding the physics of strongly correlated electronic systems has been a central issue in condensed matter physics for decades. In transition metal oxides, strong correlations characteristic of narrow $d$ bands is at the origin of such remarkab le properties as the Mott gap opening, enhanced effective mass, and anomalous vibronic coupling, to mention a few. SrVO$_3$, with V$^{4+}$ in a $3d^1$ electronic configuration is the simplest example of a 3D correlated metallic electronic system. Here, we focus on the observation of a (roughly) quadratic temperature dependence of the inverse electron mobility of this seemingly simple system, which is an intriguing property shared by other metallic oxides. The systematic analysis of electronic transport in SrVO$_3$ thin films discloses the limitations of the simplest picture of e-e correlations in a Fermi liquid; instead, we show that the quasi-2D topology of the Fermi surface and a strong electron-phonon coupling, contributing to dress carriers with a phonon cloud, play a pivotal role on the reported electron spectroscopic, optical, thermodynamic and transport data. The picture that emerges is not restricted to SrVO$_3$ but can be shared with other $3d$ and $4d$ metallic oxides.
373 - D.M. Kennes , V. Meden 2010
We address the question whether observables of an exactly solvable model of electrons coupled to (optical) phonons relax into large time stationary state values and investigate if the asymptotic expectation values can be computed using a stationary d ensity matrix. Two initial nonequilibrium situations are considered. A sudden quench of the electron-phonon coupling, starting from the noninteracting canonical equilibrium at temperature T in the electron as well as in the phonon subsystems, leads to a rather simple dynamics. A richer time evolution emerges if the initial state is taken as the product of the phonon vacuum and the filled Fermi sea supplemented by a highly excited additional electron. Our model has a natural set of constants of motion, with as many elements as degrees of freedom. In accordance with earlier studies of such type of models we find that expectation values which become stationary can be described by the density matrix of a generalized Gibbs ensemble which differs from that of a canonical ensemble. For the model at hand it appears to be evident that the eigenmode occupancy operators should be used in the construction of the stationary density matrix.
Electronic instabilities drive ordering transitions in condensed matter. Despite many advances in the microscopic understanding of the ordered states, a more nuanced and profound question often remains unanswered: how do the collective excitations in fluence the electronic order formation? Here, we experimentally show that a phonon affects the spin density wave (SDW) formation after an SDW-quench by femtosecond laser pulses. In a thin film, the temperature-dependent SDW period is quantized, allowing us to track the out-of-equilibrium formation path of the SDW precisely. By exploiting its persistent coupling to the lattice, we probe the SDW through the transient lattice distortion, measured by femtosecond X-ray diffraction. We find that within 500 femtoseconds after a complete quench, the SDW forms with the low-temperature period, directly bypassing a thermal state with the high-temperature period. We argue that a momentum-matched phonon launched by the quench changes the formation path of the SDW through the dynamic pinning of the order parameter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا