ﻻ يوجد ملخص باللغة العربية
Electronic instabilities drive ordering transitions in condensed matter. Despite many advances in the microscopic understanding of the ordered states, a more nuanced and profound question often remains unanswered: how do the collective excitations influence the electronic order formation? Here, we experimentally show that a phonon affects the spin density wave (SDW) formation after an SDW-quench by femtosecond laser pulses. In a thin film, the temperature-dependent SDW period is quantized, allowing us to track the out-of-equilibrium formation path of the SDW precisely. By exploiting its persistent coupling to the lattice, we probe the SDW through the transient lattice distortion, measured by femtosecond X-ray diffraction. We find that within 500 femtoseconds after a complete quench, the SDW forms with the low-temperature period, directly bypassing a thermal state with the high-temperature period. We argue that a momentum-matched phonon launched by the quench changes the formation path of the SDW through the dynamic pinning of the order parameter.
We investigate the scattering of an electron by phonons in a small structure between two one-dimensional tight-binding leads. This model mimics the quantum electron transport through atomic wires or molecular junctions coupled to metallic leads. The
The flow of charge and entropy in solids usually depends on collisions decaying quasiparticle momentum. Hydrodynamic corrections can emerge, however, if most collisions among quasiparticles conserve momentum and the mean-free-path approaches the samp
Understanding the influence of vibrational degrees of freedom on transport through a heterostructure poses considerable theoretical and numerical challenges. In this work, we use the density-matrix renormalization group (DMRG) method together with lo
This paper consists of two important theoretical observations on the interplay between l = 2 condensates; d-density wave (ddw), electronic nematic and d-wave superconducting states. (1) There is SO(4) invariance at a transition between the nematic an
Vanadium disulfide (VS_{2}) attracts elevated interests for its charge-density wave (CDW) phase transition, ferromagnetism, and catalytic reactivity, but the electronic structure of monolayer has not been well understood yet. Here we report synthesis