ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum chaos in an electron-phonon bad metal

76   0   0.0 ( 0 )
 نشر من قبل Erez Berg
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate the scrambling rate $lambda_L$ and the butterfly velocity $v_B$ associated with the growth of quantum chaos for a solvable large-$N$ electron-phonon system. We study a temperature regime in which the electrical resistivity of this system exceeds the Mott-Ioffe-Regel limit and increases linearly with temperature - a sign that there are no long-lived charged quasiparticles - although the phonons remain well-defined quasiparticles. The long-lived phonons determine $lambda_L$, rendering it parametrically smaller than the theoretical upper-bound $lambda_L ll lambda_{max}=2pi T/hbar$. Significantly, the chaos properties seem to be intrinsic - $lambda_L$ and $v_B$ are the same for electronic and phononic operators. We consider two models - one in which the phonons are dispersive, and one in which they are dispersionless. In either case, we find that $lambda_L$ is proportional to the inverse phonon lifetime, and $v_B$ is proportional to the effective phonon velocity. The thermal and chaos diffusion constants, $D_E$ and $D_Lequiv v_B^2/lambda_L$, are always comparable, $D_E sim D_L$. In the dispersive phonon case, the charge diffusion constant $D_C$ satisfies $D_Lgg D_C$, while in the dispersionless case $D_L ll D_C$.

قيم البحث

اقرأ أيضاً

We compute the scrambling rate at the antiferromagnetic (AFM) quantum critical point, using the fixed point theory of Phys. Rev. X $boldsymbol{7}$, 021010 (2017). At this strongly coupled fixed point, there is an emergent control parameter $w ll 1$ t hat is a ratio of natural parameters of the theory. The strong coupling is unequally felt by the two degrees of freedom: the bosonic AFM collective mode is heavily dressed by interactions with the electrons, while the electron is only marginally renormalized. We find that the scrambling rates act as a measure of the degree of integrability of each sector of the theory: the Lyapunov exponent for the boson $lambda_L^{(B)} sim mathcal O(sqrt{w}) ,k_B T/hbar$ is significantly larger than the fermion one $lambda_L^{(F)} sim mathcal O(w^2) ,k_B T/hbar$, where $T$ is the temperature. Although the interaction strength in the theory is of order unity, the larger Lyapunov exponent is still parametrically smaller than the universal upper bound of $lambda_L=2pi k_B T/hbar$. We also compute the spatial spread of chaos by the boson operator, whose low-energy propagator is highly non-local. We find that this non-locality leads to a scrambled region that grows exponentially fast, giving an infinite butterfly velocity of the chaos front, a result that has also been found in lattice models with long-range interactions.
Understanding the physics of strongly correlated electronic systems has been a central issue in condensed matter physics for decades. In transition metal oxides, strong correlations characteristic of narrow $d$ bands is at the origin of such remarkab le properties as the Mott gap opening, enhanced effective mass, and anomalous vibronic coupling, to mention a few. SrVO$_3$, with V$^{4+}$ in a $3d^1$ electronic configuration is the simplest example of a 3D correlated metallic electronic system. Here, we focus on the observation of a (roughly) quadratic temperature dependence of the inverse electron mobility of this seemingly simple system, which is an intriguing property shared by other metallic oxides. The systematic analysis of electronic transport in SrVO$_3$ thin films discloses the limitations of the simplest picture of e-e correlations in a Fermi liquid; instead, we show that the quasi-2D topology of the Fermi surface and a strong electron-phonon coupling, contributing to dress carriers with a phonon cloud, play a pivotal role on the reported electron spectroscopic, optical, thermodynamic and transport data. The picture that emerges is not restricted to SrVO$_3$ but can be shared with other $3d$ and $4d$ metallic oxides.
The role of the crystal lattice for the electronic properties of cuprates and other high-temperature superconductors remains controversial despite decades of theoretical and experimental efforts. While the paradigm of strong electronic correlations s uggests a purely electronic mechanism behind the insulator-to-metal transition, recently the mutual enhancement of the electron-electron and the electron-phonon interaction and its relevance to the formation of the ordered phases have also been emphasized. Here, we combine polarization-resolved ultrafast optical spectroscopy and state-of-the-art dynamical mean-field theory to show the importance of the crystal lattice in the breakdown of the correlated insulating state in an archetypal undoped cuprate. We identify signatures of electron-phonon coupling to specific fully-symmetric optical modes during the build-up of a three-dimensional metallic state that follows charge photodoping. Calculations for coherently displaced crystal structures along the relevant phonon coordinates indicate that the insulating state is remarkably unstable toward metallization despite the seemingly large charge-transfer energy scale. This hitherto unobserved insulator-to-metal transition mediated by fully-symmetric lattice modes can find extensive application in a plethora of correlated solids.
The flow of charge and entropy in solids usually depends on collisions decaying quasiparticle momentum. Hydrodynamic corrections can emerge, however, if most collisions among quasiparticles conserve momentum and the mean-free-path approaches the samp le dimensions. Here, through a study of electrical and thermal transport in antimony (Sb) crystals of various sizes, we document the emergence of a two-component fluid of electrons and phonons. Lattice thermal conductivity, dominated by electron scattering down to 0.1 K, displays prominent quantum oscillations. The Dingle mobility does not vary despite an order-of-magnitude change in transport mobility. Electrical resistivity shows an aborted Bloch-Gruneisen behavior, implying momentum conservation of electron-phonon collisions. Taken together, these results draw a consistent picture of a bi-fluid whose shortest intrinsic time scale is defined by momentum-conserving electron-phonon collisions.
We use the nonequilibrium dynamical mean field theory formalism to compute the equilibrium and nonequilibrium resonant inelastic X-ray scattering (RIXS) signal of a strongly interacting fermionic lattice model with a coupling of dispersionless phonon s to the total charge on a given site. In the atomic limit, this model produces phonon subbands in the spectral function, but not in the RIXS signal. Electron hopping processes however result in phonon-related modifications of the charge excitation peak. We discuss the equilibrium RIXS spectra and the characteristic features of nonequilibrium states induced by photo-doping and by the application of a static electric field. The latter produces features related to Wannier-Stark states, which are dressed with phonon sidebands. Thanks to the effect of field-induced localization, the phonon features can be clearly resolved even in systems with weak electron-phonon coupling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا