ترغب بنشر مسار تعليمي؟ اضغط هنا

High Permittivity Dielectric Field-Plated Vertical (001) $beta$-Ga$_2$O$_3$ Schottky Barrier Diode with Surface Breakdown Electric Field of 5.45 MV/cm and BFOM of $>$ 1 GW/cm$^{2}$

103   0   0.0 ( 0 )
 نشر من قبل Saurav Roy
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents vertical (001) oriented $beta$-Ga$_2$O$_3$ field plated (FP) Schottky barrier diode (SBD) with a novel extreme permittivity dielectric field oxide. A thin drift layer of 1.7 $mu m$ was used to enable a punch-through (PT) field profile and very low differential specific on-resistance (R$_{on-sp}$) of 0.32 m$Omega$-cm$^{2}$. The extreme permittivity field plate oxide facilitated the lateral spread of the electric field profile beyond the field plate edge and enabled a breakdown voltage ($V_{br}$) of 687 V. The edge termination efficiency increases from 13.5 $%$ for non-field plated structure to 63 $%$ for high permittivity field plate structure. The surface breakdown electric field was extracted to be 5.45 MV/cm at the center of the anode region using TCAD simulations. The high permittivity field plated SBD demonstrated a record high Baliga figure of merit (BFOM) of 1.47 GW/cm$^{2}$ showing the potential of Ga$_2$O$_3$ power devices for multi-kilovolt class applications.

قيم البحث

اقرأ أيضاً

Wide and ultra-wide band gap semiconductors can provide excellent performance due to their high energy band gap, which leads to breakdown electric fields that are more than an order of magnitude higher than conventional silicon electronics. In materi als where p-type doping is not available, achieving this high breakdown field in a vertical diode or transistor is very challenging. We propose and demonstrate the use of dielectric heterojunctions that use extreme permittivity materials to achieve high breakdown field in a unipolar device. We demonstrate the integration of a high permittivity material BaTiO3 with n-type $beta$-Ga2O3 to enable 5.7 MV/cm average electric field and 7 MV/cm peak electric field at the device edge, while maintaining forward conduction with relatively low on-resistance and voltage loss. The proposed dielectric heterojunction could enable new design strategies to achieve theoretical device performance limits in wide and ultra-wide band gap semiconductors where bipolar doping is challenging.
Recent breakthroughs in bulk crystal growth of the thermodynamically stable beta phase of gallium oxide ($beta$-Ga$_2$O$_3$) have led to the commercialization of large-area beta-Ga$_2$O$_3$ substrates with subsequent epitaxy on (010) substrates produ cing high-quality films. Still, metal-organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), and processing of the (010) $beta$-Ga$_2$O$_3$ surface are known to form sub-nanometer scale facets along the [001] direction as well as larger ridges with features perpendicular to the [001] direction. A density function theory calculation of the (010) surface shows an ordering of the surface as a sub-nanometer-scale feature along the [001] direction. Additionally, the general crystal structure of $beta$-Ga$_2$O$_3$ is presented and recommendations are presented for standardizing (010) substrates to account for and control the larger-scale ridge formation.
We introduce a deep-recessed gate architecture in $beta$-Ga$_2$O$_3$ delta-doped field effect transistors for improvement in DC-RF dispersion and breakdown properties. The device design incorporates an unintentionally doped $beta$-Ga$_2$O$_3$ layer a s the passivation dielectric. To fabricate the device, the deep-recess geometry was developed using BCl$_3$ plasma based etching at ~5 W RIE to ensure minimal plasma damage. Etch damage incurred with plasma etching was mitigated by annealing in vacuum at temperatures above 600 $deg$C. A gate-connected field-plate edge termination was implemented for efficient field management. Negligible surface dispersion with lower knee-walkout at high V$_mathrm{DS}$, and better breakdown characteristics compared to their unpassivated counterparts were achieved. A three terminal off-state breakdown voltage of 315 V, corresponding to an average breakdown field of 2.3 MV/cm was measured. The device breakdown was limited by the field-plate/passivation edge and presents scope for further improvement. This demonstration of epitaxially passivated field effect transistors is a significant step for $beta$-Ga$_2$O$_3$ technology since the structure simultaneously provides control of surface-related dispersion and excellent field management.
$beta$-Ga$_2$O$_3$ is a promising ultra-wide bandgap semiconductor whose properties can be further enhanced by alloying with Al. Here, using atomic-resolution scanning transmission electron microscopy (STEM), we find the thermodynamically-unstable $g amma$-phase is a ubiquitous defect in both $beta$-(Al$_x$Ga$_{1text{-}x}$)$_2$O$_3$ films and doped $beta$-Ga$_2$O$_3$ films grown by molecular beam epitaxy. For undoped $beta$-(Al$_x$Ga$_{1text{-}x}$)$_2$O$_3$ films we observe $gamma$-phase inclusions between nucleating islands of the $beta$-phase at lower growth temperatures (~400-600 $^{circ}$C). In doped $beta$-Ga$_2$O$_3$, a thin layer of the $gamma$-phase is observed on the surfaces of films grown with a wide range of n-type dopants and dopant concentrations. The thickness of the $gamma$-phase layer was most strongly correlated with the growth temperature, peaking at about 600 $^{circ}$C. Ga interstitials are observed in $beta$-phase, especially near the interface with the $gamma$-phase. By imaging the same region of the surface of a Sn-doped $beta$-(Al$_x$Ga$_{1text{-}x}$)$_2$O$_3$ after ex-situ heating up to 400 $^{circ}$C, a $gamma$-phase region is observed to grow above the initial surface, accompanied by a decrease in Ga interstitials in the $beta$-phase. This suggests that the diffusion of Ga interstitials towards the surface is likely the mechanism for growth of the surface $gamma$-phase, and more generally that the more-open $gamma$-phase may offer diffusion pathways to be a kinetically-favored and early-forming phase in the growth of Ga$_2$O$_3$.
In this work we study the Schottky barrier height (SBH) at the junction between $beta$-Ga$_2$O$_3$ and platinum, a system of great importance for the next generation of high-power and high-temperature electronic devices. Specifically, we obtain inter facial atomic structures at different orientations using our novel structure matching algorithm and compute their SBH using electronic structure calculations based on hybrid density functional theory. The orientation and strain of platinum are found to have little impact on the barrier height. In contrast, we find that decomposed water (H.OH), which could be present at the interface from Ga$_2$O$_3$ substrate preparation, has a strong influence on the SBH, in particular in the ($overline{2}$01) orientation. The SBH can range from $sim$2 eV for the pristine interface to nearly zero for the full H.OH coverage. This result suggests that SBH of $sim$2~eV can be achieved for the Ga$_2$O$_3$($overline{2}$01)/Pt junction using the substrate preparation methods that can reduce the amount of adsorbed water at the interface.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا