ﻻ يوجد ملخص باللغة العربية
Recent breakthroughs in bulk crystal growth of the thermodynamically stable beta phase of gallium oxide ($beta$-Ga$_2$O$_3$) have led to the commercialization of large-area beta-Ga$_2$O$_3$ substrates with subsequent epitaxy on (010) substrates producing high-quality films. Still, metal-organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), and processing of the (010) $beta$-Ga$_2$O$_3$ surface are known to form sub-nanometer scale facets along the [001] direction as well as larger ridges with features perpendicular to the [001] direction. A density function theory calculation of the (010) surface shows an ordering of the surface as a sub-nanometer-scale feature along the [001] direction. Additionally, the general crystal structure of $beta$-Ga$_2$O$_3$ is presented and recommendations are presented for standardizing (010) substrates to account for and control the larger-scale ridge formation.
$beta$-Ga$_2$O$_3$ is a promising ultra-wide bandgap semiconductor whose properties can be further enhanced by alloying with Al. Here, using atomic-resolution scanning transmission electron microscopy (STEM), we find the thermodynamically-unstable $g
We introduce a deep-recessed gate architecture in $beta$-Ga$_2$O$_3$ delta-doped field effect transistors for improvement in DC-RF dispersion and breakdown properties. The device design incorporates an unintentionally doped $beta$-Ga$_2$O$_3$ layer a
A comprehensive study of drain current dispersion effects in $beta$-Ga$_2$O$_3$ FETs has been done using DC, pulsed and RF measurements. Both virtual gate effect in the gate-drain access region and interface traps under the gate are most plausible ex
Based on first-principles calculations, we show that the maximum reachable concentration $x$ in the (Ga$_{1-x}$In$_x$)$_2$O$_3$ alloy in the low-$x$ regime (i.e. In solubility in $beta$-Ga$_2$O$_3$) is around 10%. We then calculate the band alignment
This paper presents vertical (001) oriented $beta$-Ga$_2$O$_3$ field plated (FP) Schottky barrier diode (SBD) with a novel extreme permittivity dielectric field oxide. A thin drift layer of 1.7 $mu m$ was used to enable a punch-through (PT) field pro