ترغب بنشر مسار تعليمي؟ اضغط هنا

Schottky Barrier Height at the Ga$_2$O$_3$/Pt Interface: Theoretical Insights and the Path to Improvement

113   0   0.0 ( 0 )
 نشر من قبل F\\'elix Therrien
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we study the Schottky barrier height (SBH) at the junction between $beta$-Ga$_2$O$_3$ and platinum, a system of great importance for the next generation of high-power and high-temperature electronic devices. Specifically, we obtain interfacial atomic structures at different orientations using our novel structure matching algorithm and compute their SBH using electronic structure calculations based on hybrid density functional theory. The orientation and strain of platinum are found to have little impact on the barrier height. In contrast, we find that decomposed water (H.OH), which could be present at the interface from Ga$_2$O$_3$ substrate preparation, has a strong influence on the SBH, in particular in the ($overline{2}$01) orientation. The SBH can range from $sim$2 eV for the pristine interface to nearly zero for the full H.OH coverage. This result suggests that SBH of $sim$2~eV can be achieved for the Ga$_2$O$_3$($overline{2}$01)/Pt junction using the substrate preparation methods that can reduce the amount of adsorbed water at the interface.

قيم البحث

اقرأ أيضاً

We use electronic transport and atom probe tomography to study ZnO:Al / SiO2 / Si Schottky junctions on lightly-doped n- and p-type Si. We vary the carrier concentration in the the ZnO:Al films by two orders of magnitude but the Schottky barrier heig ht remains constant, consistent with Fermi level pinning seen in metal / Si junctions. Atom probe tomography shows that Al segregates to the interface, so that the ZnO:Al at the junction is likely to be metallic even when the bulk of the ZnO:Al film is semiconducting. We hypothesize that Fermi level pinning is connected to the insulator-metal transition in doped ZnO, and that controlling this transition may be key to un-pinning the Fermi level in oxide / Si Schottky junctions.
The authors report on the crystallographic orientation dependence of the Schottky properties for heterojunctions between a half-metallic ferromagnet La$_0.6$Sr$_0.4$MnO$_3$ (LSMO) and Nb-doped SrTiO3 semiconductor. The Schottky barrier height determi ned by in situ photoemission measurements is independent for the substrate orientations (001) and (110), while the magnetic properties of LSMO (110) films are more enhanced than for (001) films. These results suggest that the performance of magnetic devices based on ferromagnetic manganite is improved by using (110)-oriented substrates.
118 - Alaska Subedi 2021
I use first principles calculations to investigate the thermal conductivity of $beta$-In$_2$O$_3$ and compare the results with that of $alpha$-Al$_2$O$_3$, $beta$-Ga$_2$O$_3$, and KTaO$_3$. The calculated thermal conductivity of $beta$-In$_2$O$_3$ ag rees well with the experimental data obtain recently, which found that the low-temperature thermal conductivity in this material can reach values above 1000 W/mK. I find that the calculated thermal conductivity of $beta$-Ga$_2$O$_3$ is larger than that of $beta$-In$_2$O$_3$ at all temperatures, which implies that $beta$-Ga$_2$O$_3$ should also exhibit high values of thermal conductivity at low temperatures. The thermal conductivity of KTaO$_3$ calculated ignoring the temperature-dependent phonon softening of low-frequency modes give high-temperature values similar that of $beta$-Ga$_2$O$_3$. However, the calculated thermal conductivity of KTaO$_3$ does not increase as steeply as that of the binary compounds at low temperatures, which results in KTaO$_3$ having the lowest low-temperature thermal conductivity despite having acoustic phonon velocities larger than that of $beta$-Ga$_2$O$_3$ and $beta$-In$_2$O$_3$. I attribute this to the fact that the acoustic phonon velocities at low frequencies in KTaO$_3$ is less uniformly distributed because its acoustic phonon branches are more dispersive compared to the binary oxides, which causes enhanced momentum loss even during the normal phonon-phonon scattering processes. I also calculate thermal diffusivity using the theoretically obtained thermal conductivity and heat capacity and find that all four materials exhibit the expected $T^{-1}$ behavior at high temperatures. Additionally, the calculated ratio of the average phonon scattering time to Planckian time is larger than the lower bound of 1 that has been observed empirically in numerous other materials.
Based on first-principles calculations, we show that the maximum reachable concentration $x$ in the (Ga$_{1-x}$In$_x$)$_2$O$_3$ alloy in the low-$x$ regime (i.e. In solubility in $beta$-Ga$_2$O$_3$) is around 10%. We then calculate the band alignment at the (100) interface between $beta$-Ga$_2$O$_3$ and (Ga$_{1-x}$In$_x$)$_2$O$_3$ at 12%, the nearest computationally treatable concentration. The alignment is strongly strain-dependent: it is of type-B staggered when the alloy is epitaxial on Ga$_2$O$_3$, and type-A straddling in a free-standing superlattice. Our results suggest a limited range of applicability of low-In-content GaInO alloys.
We determine the anisotropic dielectric functions of rhombohedral $alpha$-Ga$_2$O$_3$ by far-infrared and infrared generalized spectroscopic ellipsometry and derive all transverse optical and longitudinal optical phonon mode frequencies and broadenin g parameters. We also determine the high frequency and static dielectric constants. We perform density functional theory computations and determine the phonon dispersion for all branches in the Brillouin zone, and we derive all phonon mode parameters at the Brillouin zone center including Raman-active, infrared-active, and silent modes. Excellent agreement is obtained between our experimental and computation results as well as among all previously reported partial information from experiment and theory. We also compute the same information for $alpha$-Al$_2$O$_3$, the binary parent compound for the emerging alloy of $alpha$-(Al$_{x}$Ga$_{1-x}$)$_2$O$_3$, and use results from previous investigations [Schubert, Tiwald, and Herzinger, Phys. Rev. B 61, 8187 (2000)] to compare all properties among the two isostructural compounds. From both experimental and theoretical investigations we compute the frequency shifts of all modes between the two compounds. Additionally, we calculate overlap parameters between phonon mode eigenvectors and discuss the possible evolution of all phonon modes into the ternary alloy system and whether modes may form single mode or more complex mode behaviors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا