ترغب بنشر مسار تعليمي؟ اضغط هنا

A Comprehensive Survey of Inverse Uncertainty Quantification of Physical Model Parameters in Nuclear System Thermal-Hydraulics Codes

80   0   0.0 ( 0 )
 نشر من قبل Xu Wu
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Uncertainty Quantification (UQ) is an essential step in computational model validation because assessment of the model accuracy requires a concrete, quantifiable measure of uncertainty in the model predictions. The concept of UQ in the nuclear community generally means forward UQ (FUQ), in which the information flow is from the inputs to the outputs. Inverse UQ (IUQ), in which the information flow is from the model outputs and experimental data to the inputs, is an equally important component of UQ but has been significantly underrated until recently. FUQ requires knowledge in the input uncertainties which has been specified by expert opinion or user self-evaluation. IUQ is defined as the process to inversely quantify the input uncertainties based on experimental data. This review paper aims to provide a comprehensive and comparative discussion of the major aspects of the IUQ methodologies that have been used on the physical models in system thermal-hydraulics codes. IUQ methods can be categorized by three main groups: frequentist (deterministic), Bayesian (probabilistic), and empirical (design-of-experiments). We used eight metrics to evaluate an IUQ method, including solidity, complexity, accessibility, independence, flexibility, comprehensiveness, transparency, and tractability. Twelve IUQ methods are reviewed, compared, and evaluated based on these eight metrics. Such comparative evaluation will provide a good guidance for users to select a proper IUQ method based on the IUQ problem under investigation.



قيم البحث

اقرأ أيضاً

Additive manufacturing (AM) technology is being increasingly adopted in a wide variety of application areas due to its ability to rapidly produce, prototype, and customize designs. AM techniques afford significant opportunities in regard to nuclear m aterials, including an accelerated fabrication process and reduced cost. High-fidelity modeling and simulation (M&S) of AM processes is being developed in Idaho National Laboratory (INL)s Multiphysics Object-Oriented Simulation Environment (MOOSE) to support AM process optimization and provide a fundamental understanding of the various physical interactions involved. In this paper, we employ Bayesian inverse uncertainty quantification (UQ) to quantify the input uncertainties in a MOOSE-based melt pool model for AM. Inverse UQ is the process of inversely quantifying the input uncertainties while keeping model predictions consistent with the measurement data. The inverse UQ process takes into account uncertainties from the model, code, and data while simultaneously characterizing the uncertain distributions in the input parameters--rather than merely providing best-fit point estimates. We employ measurement data on melt pool geometry (lengths and depths) to quantify the uncertainties in several melt pool model parameters. Simulation results using the posterior uncertainties have shown improved agreement with experimental data, as compared to those using the prior nominal values. The resulting parameter uncertainties can be used to replace expert opinions in future uncertainty, sensitivity, and validation studies.
The uncertainty quantifications of theoretical results are of great importance to make meaningful comparisons of those results with experimental data and to make predictions in experimentally unknown regions. By quantifying uncertainties, one can mak e more solid statements about, e.g., origins of discrepancy in some quantities between theory and experiment. We propose a novel method for uncertainty quantification for the effective interactions of nuclear shell-model calculations as an example. The effective interaction is specified by a set of parameters, and its probability distribution in the multi-dimensional parameter space is considered. This enables us to quantify the agreement with experimental data in a statistical manner and the resulting confidence intervals show unexpectedly large variations. Moreover, we point out that a large deviation of the confidence interval for the energy in shell-model calculations from the corresponding experimental data can be used as an indicator of some exotic property, e.g. alpha clustering, etc. Other possible applications and impacts are also discussed.
A population quantity of interest in statistical shape analysis is the location of landmarks, which are points that aid in reconstructing and representing shapes of objects. We provide an automated, model-based approach to inferring landmarks given a sample of shape data. The model is formulated based on a linear reconstruction of the shape, passing through the specified points, and a Bayesian inferential approach is described for estimating unknown landmark locations. The question of how many landmarks to select is addressed in two different ways: (1) by defining a criterion-based approach, and (2) joint estimation of the number of landmarks along with their locations. Efficient methods for posterior sampling are also discussed. We motivate our approach using several simulated examples, as well as data obtained from applications in computer vision and biology; additionally, we explore placements and associated uncertainty in landmarks for various substructures extracted from magnetic resonance image slices.
For more than a century, fingerprints have been used with considerable success to identify criminals or verify the identity of individuals. The categorical conclusion scheme used by fingerprint examiners, and more generally the inference process foll owed by forensic scientists, have been heavily criticised in the scientific and legal literature. Instead, scholars have proposed to characterise the weight of forensic evidence using the Bayes factor as the key element of the inference process. In forensic science, quantifying the magnitude of support is equally as important as determining which model is supported. Unfortunately, the complexity of fingerprint patterns render likelihood-based inference impossible. In this paper, we use an Approximate Bayesian Computation model selection algorithm to quantify the weight of fingerprint evidence. We supplement the ABC algorithm using a Receiver Operating Characteristic curve to mitigate the effect of the curse of dimensionality. Our modified algorithm is computationally efficient and makes it easier to monitor convergence as the number of simulations increase. We use our method to quantify the weight of fingerprint evidence in forensic science, but we note that it can be applied to any other forensic pattern evidence.
Mass cytometry technology enables the simultaneous measurement of over 40 proteins on single cells. This has helped immunologists to increase their understanding of heterogeneity, complexity, and lineage relationships of white blood cells. Current st atistical methods often collapse the rich single-cell data into summary statistics before proceeding with downstream analysis, discarding the information in these multivariate datasets. In this article, our aim is to exhibit the use of statistical analyses on the raw, uncompressed data thus improving replicability, and exposing multivariate patterns and their associated uncertainty profiles. We show that multivariate generative models are a valid alternative to univariate hypothesis testing. We propose two models: a multivariate Poisson log-normal mixed model and a logistic linear mixed model. We show that these models are complementary and that either model can account for different confounders. We use Hamiltonian Monte Carlo to provide Bayesian uncertainty quantification. Our models applied to a recent pregnancy study successfully reproduce key findings while quantifying increased overall protein-to-protein correlations between first and third trimester.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا