ترغب بنشر مسار تعليمي؟ اضغط هنا

Bayesian Inverse Uncertainty Quantification of a MOOSE-based Melt Pool Model for Additive Manufacturing Using Experimental Data

133   0   0.0 ( 0 )
 نشر من قبل Xu Wu
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Additive manufacturing (AM) technology is being increasingly adopted in a wide variety of application areas due to its ability to rapidly produce, prototype, and customize designs. AM techniques afford significant opportunities in regard to nuclear materials, including an accelerated fabrication process and reduced cost. High-fidelity modeling and simulation (M&S) of AM processes is being developed in Idaho National Laboratory (INL)s Multiphysics Object-Oriented Simulation Environment (MOOSE) to support AM process optimization and provide a fundamental understanding of the various physical interactions involved. In this paper, we employ Bayesian inverse uncertainty quantification (UQ) to quantify the input uncertainties in a MOOSE-based melt pool model for AM. Inverse UQ is the process of inversely quantifying the input uncertainties while keeping model predictions consistent with the measurement data. The inverse UQ process takes into account uncertainties from the model, code, and data while simultaneously characterizing the uncertain distributions in the input parameters--rather than merely providing best-fit point estimates. We employ measurement data on melt pool geometry (lengths and depths) to quantify the uncertainties in several melt pool model parameters. Simulation results using the posterior uncertainties have shown improved agreement with experimental data, as compared to those using the prior nominal values. The resulting parameter uncertainties can be used to replace expert opinions in future uncertainty, sensitivity, and validation studies.


قيم البحث

اقرأ أيضاً

Melt pool (MP) temperature is one of the determining factors and key signatures for the properties of printed components during metal additive manufacturing (AM). The state-of-the art measurement systems are hindered by both the equipment cost and th e large-scale data acquisition and processing demands. In this work, we introduce a novel coaxial high-speed single-camera two-wavelength imaging pyrometer (STWIP) system as opposed to the typical utilization of multiple cameras for measuring MP temperature profiles through a laser powder bed fusion (LPBF) process. Developed on a commercial LPBF machine (EOS M290), the STWIP system is demonstrated to be able to quantitatively monitor MP temperature and variation for 50 layers at high framerates (> 30,000 fps) during a print of five standard fatigue specimens. High performance computing is employed to analyze the acquired big data of MP images for determining each MPs average temperature and 2D temperature profile. The MP temperature evolution in the gage section of a fatigue specimen is also examined at a temporal resolution of 1ms by evaluating the derived MP temperatures of the printed samples first, middle and last layers. This paper is first of its kind on monitoring MP temperature distribution and evolution at such a large, detailed scale for longer durations in practical applications. Future work includes MP registration and machine learning of MP-Part Property relations.
Bayesian optimization (BO) is an approach to globally optimizing black-box objective functions that are expensive to evaluate. BO-powered experimental design has found wide application in materials science, chemistry, experimental physics, drug devel opment, etc. This work aims to bring attention to the benefits of applying BO in designing experiments and to provide a BO manual, covering both methodology and software, for the convenience of anyone who wants to apply or learn BO. In particular, we briefly explain the BO technique, review all the applications of BO in additive manufacturing, compare and exemplify the features of different open BO libraries, unlock new potential applications of BO to other types of data (e.g., preferential output). This article is aimed at readers with some understanding of Bayesian methods, but not necessarily with knowledge of additive manufacturing; the software performance overview and implementation instructions are instrumental for any experimental-design practitioner. Moreover, our review in the field of additive manufacturing highlights the current knowledge and technological trends of BO.
79 - Xu Wu , Ziyu Xie , Farah Alsafadi 2021
Uncertainty Quantification (UQ) is an essential step in computational model validation because assessment of the model accuracy requires a concrete, quantifiable measure of uncertainty in the model predictions. The concept of UQ in the nuclear commun ity generally means forward UQ (FUQ), in which the information flow is from the inputs to the outputs. Inverse UQ (IUQ), in which the information flow is from the model outputs and experimental data to the inputs, is an equally important component of UQ but has been significantly underrated until recently. FUQ requires knowledge in the input uncertainties which has been specified by expert opinion or user self-evaluation. IUQ is defined as the process to inversely quantify the input uncertainties based on experimental data. This review paper aims to provide a comprehensive and comparative discussion of the major aspects of the IUQ methodologies that have been used on the physical models in system thermal-hydraulics codes. IUQ methods can be categorized by three main groups: frequentist (deterministic), Bayesian (probabilistic), and empirical (design-of-experiments). We used eight metrics to evaluate an IUQ method, including solidity, complexity, accessibility, independence, flexibility, comprehensiveness, transparency, and tractability. Twelve IUQ methods are reviewed, compared, and evaluated based on these eight metrics. Such comparative evaluation will provide a good guidance for users to select a proper IUQ method based on the IUQ problem under investigation.
There is increasing appetite for analysing multiple network data. This is different to analysing traditional data sets, where now each observation in the data comprises a network. Recent technological advancements have allowed the collection of this type of data in a range of different applications. This has inspired researchers to develop statistical models that most accurately describe the probabilistic mechanism that generates a network population and use this to make inferences about the underlying structure of the network data. Only a few studies developed to date consider the heterogeneity that can exist in a network population. We propose a Mixture of Measurement Error Models for identifying clusters of networks in a network population, with respect to similarities detected in the connectivity patterns among the networks nodes. Extensive simulation studies show our model performs well in both clustering multiple network data and inferring the model parameters. We further apply our model on two real world multiple network data sets resulting from the fields of Computing (Human Tracking Systems) and Neuroscience.
Wire-feed laser additive manufacturing (WLAM) is gaining wide interest due to its high level of automation, high deposition rates, and good quality of printed parts. In-process monitoring and feedback controls that would reduce the uncertainty in the quality of the material are in the early stages of development. Machine learning promises the ability to accelerate the adoption of new processes and property design in additive manufacturing by making process-structure-property connections between process setting inputs and material quality outcomes. The molten pool dimensional information and temperature are the indicators for achieving the high quality of the build, which can be directly controlled by processing parameters. For the purpose of in situ quality control, the process parameters should be controlled in real-time based on sensed information from the process, in particular the molten pool. Thus, the molten pool-process relations are of preliminary importance. This paper analyzes experimentally collected in situ sensing data from the molten pool under a set of controlled process parameters in a WLAM system. The variations in the steady-state and transient state of the molten pool are presented with respect to the change of independent process parameters. A multi-modality convolutional neural network (CNN) architecture is proposed for predicting the control parameter directly from the measurable molten pool sensor data for achieving desired geometric and microstructural properties. Dropout and regularization are applied to the CNN architecture to avoid the problem of overfitting. The results highlighted that the multi-modal CNN, which receives temperature profile as an external feature to the features extracted from the image data, has improved prediction performance compared to the image-based uni-modality CNN approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا