ترغب بنشر مسار تعليمي؟ اضغط هنا

Automatic Detection and Uncertainty Quantification of Landmarks on Elastic Curves

108   0   0.0 ( 0 )
 نشر من قبل Justin Strait
 تاريخ النشر 2017
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

A population quantity of interest in statistical shape analysis is the location of landmarks, which are points that aid in reconstructing and representing shapes of objects. We provide an automated, model-based approach to inferring landmarks given a sample of shape data. The model is formulated based on a linear reconstruction of the shape, passing through the specified points, and a Bayesian inferential approach is described for estimating unknown landmark locations. The question of how many landmarks to select is addressed in two different ways: (1) by defining a criterion-based approach, and (2) joint estimation of the number of landmarks along with their locations. Efficient methods for posterior sampling are also discussed. We motivate our approach using several simulated examples, as well as data obtained from applications in computer vision and biology; additionally, we explore placements and associated uncertainty in landmarks for various substructures extracted from magnetic resonance image slices.



قيم البحث

اقرأ أيضاً

In the political decision process and control of COVID-19 (and other epidemic diseases), mathematical models play an important role. It is crucial to understand and quantify the uncertainty in models and their predictions in order to take the right d ecisions and trustfully communicate results and limitations. We propose to do uncertainty quantification in SIR-type models using the efficient framework of generalized Polynomial Chaos. Through two particular case studies based on Danish data for the spread of Covid-19 we demonstrate the applicability of the technique. The test cases are related to peak time estimation and superspeading and illustrate how very few model evaluations can provide insightful statistics.
Mass cytometry technology enables the simultaneous measurement of over 40 proteins on single cells. This has helped immunologists to increase their understanding of heterogeneity, complexity, and lineage relationships of white blood cells. Current st atistical methods often collapse the rich single-cell data into summary statistics before proceeding with downstream analysis, discarding the information in these multivariate datasets. In this article, our aim is to exhibit the use of statistical analyses on the raw, uncompressed data thus improving replicability, and exposing multivariate patterns and their associated uncertainty profiles. We show that multivariate generative models are a valid alternative to univariate hypothesis testing. We propose two models: a multivariate Poisson log-normal mixed model and a logistic linear mixed model. We show that these models are complementary and that either model can account for different confounders. We use Hamiltonian Monte Carlo to provide Bayesian uncertainty quantification. Our models applied to a recent pregnancy study successfully reproduce key findings while quantifying increased overall protein-to-protein correlations between first and third trimester.
93 - Xiaolei Chu , Wei Cui , Peng Liu 2021
This study presents a Bayesian spectral density approach for identification and uncertainty quantification of flutter derivatives of bridge sections utilizing buffeting displacement responses, where the wind tunnel test is conducted in turbulent flow . Different from traditional time-domain approaches (e.g., least square method and stochastic subspace identification), the newly-proposed approach is operated in frequency domain. Based on the affine invariant ensemble sampler algorithm, Markov chain Monte-Carlo sampling is employed to accomplish the Bayesian inference. The probability density function of flutter derivatives is modeled based on complex Wishart distribution, where probability serves as the measure. By the Bayesian spectral density approach, the most probable values and corresponding posterior distributions (namely identification uncertainty here) of each flutter derivative can be obtained at the same time. Firstly, numerical simulations are conducted and the identified results are accurate. Secondly, thin plate model, flutter derivatives of which have theoretical solutions, is chosen to be tested in turbulent flow for the sake of verification. The identified results of thin plate model are consistent with the theoretical solutions. Thirdly, the center-slotted girder model, which is widely-utilized long-span bridge sections in current engineering practice, is employed to investigate the applicability of the proposed approach on a general bridge section. For the center-slotted girder model, the flutter derivatives are also extracted by least square method in uniform flow to cross validate the newly-proposed approach. The identified results by two different approaches are compatible.
79 - Xu Wu , Ziyu Xie , Farah Alsafadi 2021
Uncertainty Quantification (UQ) is an essential step in computational model validation because assessment of the model accuracy requires a concrete, quantifiable measure of uncertainty in the model predictions. The concept of UQ in the nuclear commun ity generally means forward UQ (FUQ), in which the information flow is from the inputs to the outputs. Inverse UQ (IUQ), in which the information flow is from the model outputs and experimental data to the inputs, is an equally important component of UQ but has been significantly underrated until recently. FUQ requires knowledge in the input uncertainties which has been specified by expert opinion or user self-evaluation. IUQ is defined as the process to inversely quantify the input uncertainties based on experimental data. This review paper aims to provide a comprehensive and comparative discussion of the major aspects of the IUQ methodologies that have been used on the physical models in system thermal-hydraulics codes. IUQ methods can be categorized by three main groups: frequentist (deterministic), Bayesian (probabilistic), and empirical (design-of-experiments). We used eight metrics to evaluate an IUQ method, including solidity, complexity, accessibility, independence, flexibility, comprehensiveness, transparency, and tractability. Twelve IUQ methods are reviewed, compared, and evaluated based on these eight metrics. Such comparative evaluation will provide a good guidance for users to select a proper IUQ method based on the IUQ problem under investigation.
Additive manufacturing (AM) technology is being increasingly adopted in a wide variety of application areas due to its ability to rapidly produce, prototype, and customize designs. AM techniques afford significant opportunities in regard to nuclear m aterials, including an accelerated fabrication process and reduced cost. High-fidelity modeling and simulation (M&S) of AM processes is being developed in Idaho National Laboratory (INL)s Multiphysics Object-Oriented Simulation Environment (MOOSE) to support AM process optimization and provide a fundamental understanding of the various physical interactions involved. In this paper, we employ Bayesian inverse uncertainty quantification (UQ) to quantify the input uncertainties in a MOOSE-based melt pool model for AM. Inverse UQ is the process of inversely quantifying the input uncertainties while keeping model predictions consistent with the measurement data. The inverse UQ process takes into account uncertainties from the model, code, and data while simultaneously characterizing the uncertain distributions in the input parameters--rather than merely providing best-fit point estimates. We employ measurement data on melt pool geometry (lengths and depths) to quantify the uncertainties in several melt pool model parameters. Simulation results using the posterior uncertainties have shown improved agreement with experimental data, as compared to those using the prior nominal values. The resulting parameter uncertainties can be used to replace expert opinions in future uncertainty, sensitivity, and validation studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا