ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantification of the weight of fingerprint evidence using a ROC-based Approximate Bayesian Computation algorithm for model selection

239   0   0.0 ( 0 )
 نشر من قبل Jessie Hendricks
 تاريخ النشر 2018
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

For more than a century, fingerprints have been used with considerable success to identify criminals or verify the identity of individuals. The categorical conclusion scheme used by fingerprint examiners, and more generally the inference process followed by forensic scientists, have been heavily criticised in the scientific and legal literature. Instead, scholars have proposed to characterise the weight of forensic evidence using the Bayes factor as the key element of the inference process. In forensic science, quantifying the magnitude of support is equally as important as determining which model is supported. Unfortunately, the complexity of fingerprint patterns render likelihood-based inference impossible. In this paper, we use an Approximate Bayesian Computation model selection algorithm to quantify the weight of fingerprint evidence. We supplement the ABC algorithm using a Receiver Operating Characteristic curve to mitigate the effect of the curse of dimensionality. Our modified algorithm is computationally efficient and makes it easier to monitor convergence as the number of simulations increase. We use our method to quantify the weight of fingerprint evidence in forensic science, but we note that it can be applied to any other forensic pattern evidence.



قيم البحث

اقرأ أيضاً

In this paper we review the concepts of Bayesian evidence and Bayes factors, also known as log odds ratios, and their application to model selection. The theory is presented along with a discussion of analytic, approximate and numerical techniques. S pecific attention is paid to the Laplace approximation, variational Bayes, importance sampling, thermodynamic integration, and nested sampling and its recent variants. Analogies to statistical physics, from which many of these techniques originate, are discussed in order to provide readers with deeper insights that may lead to new techniques. The utility of Bayesian model testing in the domain sciences is demonstrated by presenting four specific practical examples considered within the context of signal processing in the areas of signal detection, sensor characterization, scientific model selection and molecular force characterization.
In a network meta-analysis, some of the collected studies may deviate markedly from the others, for example having very unusual effect sizes. These deviating studies can be regarded as outlying with respect to the rest of the network and can be influ ential on the pooled results. Thus, it could be inappropriate to synthesize those studies without further investigation. In this paper, we propose two Bayesian methods to detect outliers in a network meta-analysis via: (a) a mean-shifted outlier model and (b), posterior predictive p-values constructed from ad-hoc discrepancy measures. The former method uses Bayes factors to formally test each study against outliers while the latter provides a score of outlyingness for each study in the network, which allows to numerically quantify the uncertainty associated with being outlier. Furthermore, we present a simple method based on informative priors as part of the network meta-analysis model to down-weight the detected outliers. We conduct extensive simulations to evaluate the effectiveness of the proposed methodology while comparing it to some alternative, available outlier diagnostic tools. Two real networks of interventions are then used to demonstrate our methods in practice.
209 - Umberto Picchini 2012
Models defined by stochastic differential equations (SDEs) allow for the representation of random variability in dynamical systems. The relevance of this class of models is growing in many applied research areas and is already a standard tool to mode l e.g. financial, neuronal and population growth dynamics. However inference for multidimensional SDE models is still very challenging, both computationally and theoretically. Approximate Bayesian computation (ABC) allow to perform Bayesian inference for models which are sufficiently complex that the likelihood function is either analytically unavailable or computationally prohibitive to evaluate. A computationally efficient ABC-MCMC algorithm is proposed, halving the running time in our simulations. Focus is on the case where the SDE describes latent dynamics in state-space models; however the methodology is not limited to the state-space framework. Simulation studies for a pharmacokinetics/pharmacodynamics model and for stochastic chemical reactions are considered and a MATLAB package implementing our ABC-MCMC algorithm is provided.
This report is a collection of comments on the Read Paper of Fearnhead and Prangle (2011), to appear in the Journal of the Royal Statistical Society Series B, along with a reply from the authors.
For many decades, statisticians have made attempts to prepare the Bayesian omelette without breaking the Bayesian eggs; that is, to obtain probabilistic likelihood-based inferences without relying on informative prior distributions. A recent example is Murray Aitkins recent book, {em Statistical Inference}, which presents an approach to statistical hypothesis testing based on comparisons of posterior distributions of likelihoods under competing models. Aitkin develops and illustrates his method using some simple examples of inference from iid data and two-way tests of independence. We analyze in this note some consequences of the inferential paradigm adopted therein, discussing why the approach is incompatible with a Bayesian perspective and why we do not find it relevant for applied work.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا