ترغب بنشر مسار تعليمي؟ اضغط هنا

The Hamilton-Jacobi analysis for higher order Maxwell-Chern-Simons gauge theory

98   0   0.0 ( 0 )
 نشر من قبل Alberto Escalante
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By using the Hamilton-Jacobi [$HJ$] framework the higher-order Maxwell-Chern-Simons theory is analyzed. The complete set of $HJ$ Hamiltonians and a generalized $HJ$ differential are reported, from which all symmetries of the theory are identified. In addition, we complete our study by performing the higher order Gitman-Lyakhovich-Tyutin [$GLT$] framework and compare the results of both formalisms.



قيم البحث

اقرأ أيضاً

We consider the $U(1)$ Chern-Simons gauge theory defined in a general closed oriented 3-manifold $M$; the functional integration is used to compute the normalized partition function and the expectation values of the link holonomies. The nonperturbati ve path-integral is defined in the space of the gauge orbits of the connections which belong to the various inequivalent $U(1)$ principal bundles over $M$; the different sectors of the configuration space are labelled by the elements of the first homology group of $M$ and are characterized by appropriate background connections. The gauge orbits of flat connections, whose classification is also based on the homology group, control the extent of the nonperturbative contributions to the mean values. The functional integration is achieved in any 3-manifold $M$, and the corresponding path-integral invariants turn out to be strictly related with the abelian Reshetikhin-Turaev surgery invariants.
270 - O.F. Dayi 2003
Noncommutative Maxwell-Chern-Simons theory in 3-dimensions is defined in terms of star product and noncommutative fields. Seiberg-Witten map is employed to write it in terms of ordinary fields. A parent action is introduced and the dual action is der ived. For spatial noncommutativity it is studied up to second order in the noncommutativity parameter theta. A new noncommutative Chern-Simons action is defined in terms of ordinary fields, inspired by the dual action. Moreover, a transformation between noncommuting and ordinary fields is proposed.
We study resurgence properties of partition function of SU(2) Chern-Simons theory (WRT invariant) on closed three-manifolds. We check explicitly that in various examples Borel transforms of asymptotic expansions posses expected analytic properties. I n examples that we study we observe that contribution of irreducible flat connections to the path integral can be recovered from asymptotic expansions around abelian flat connections. We also discuss connection to Floer instanton moduli spaces, disk instantons in 2d sigma models, and length spectra of complex geodesics on the A-polynomial curve.
The maximal extension of supersymmetric Chern-Simons theory coupled to fundamental matter has $mathcal{N} = 3$ supersymmetry. In this short note, we provide the explicit form of the action for the mass-deformed $mathcal{N} = 3$ supersymmetric $U(N)$ Chern-Simons-Matter theory. The theory admits a unique triplet mass deformation term consistent with supersymmetry. We explicitly construct the mass-deformed $mathcal{N} = 3$ theory in $mathcal{N} = 1$ superspace using a fundamental and an anti-fundamental superfield.
We examine the energetics of $Q$-balls in Maxwell-Chern-Simons theory in two space dimensions. Whereas gauged $Q$-balls are unallowed in this dimension in the absence of a Chern-Simons term due to a divergent electromagnetic energy, the addition of a Chern-Simons term introduces a gauge field mass and renders finite the otherwise-divergent electromagnetic energy of the $Q$-ball. Similar to the case of gauged $Q$-balls, Maxwell-Chern-Simons $Q$-balls have a maximal charge. The properties of these solitons are studied as a function of the parameters of the model considered, using a numerical technique known as relaxation. The results are compared to expectations based on qualitative arguments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا