ترغب بنشر مسار تعليمي؟ اضغط هنا

Noncommutative Maxwell-Chern-Simons theory, duality and a new noncommutative Chern-Simons theory in d=3

271   0   0.0 ( 0 )
 نشر من قبل Omer Faruk Dayi
 تاريخ النشر 2003
  مجال البحث
والبحث باللغة English
 تأليف O.F. Dayi




اسأل ChatGPT حول البحث

Noncommutative Maxwell-Chern-Simons theory in 3-dimensions is defined in terms of star product and noncommutative fields. Seiberg-Witten map is employed to write it in terms of ordinary fields. A parent action is introduced and the dual action is derived. For spatial noncommutativity it is studied up to second order in the noncommutativity parameter theta. A new noncommutative Chern-Simons action is defined in terms of ordinary fields, inspired by the dual action. Moreover, a transformation between noncommuting and ordinary fields is proposed.



قيم البحث

اقرأ أيضاً

175 - Amit Giveon , David Kutasov 2008
We argue that N=2 supersymmetric Chern-Simons theories exhibit a strong-weak coupling Seiberg-type duality. We also discuss supersymmetry breaking in these theories.
We study Chern-Simons theory on 3-manifolds M that are circle-bundles over 2-dimensional orbifolds S by the method of Abelianisation. This method, which completely sidesteps the issue of having to integrate over the moduli space of non-Abelian flat c onnections, reduces the complete partition function of the non-Abelian theory on M to a 2-dimensional Abelian theory on the orbifold S which is easily evaluated.
We examine the energetics of $Q$-balls in Maxwell-Chern-Simons theory in two space dimensions. Whereas gauged $Q$-balls are unallowed in this dimension in the absence of a Chern-Simons term due to a divergent electromagnetic energy, the addition of a Chern-Simons term introduces a gauge field mass and renders finite the otherwise-divergent electromagnetic energy of the $Q$-ball. Similar to the case of gauged $Q$-balls, Maxwell-Chern-Simons $Q$-balls have a maximal charge. The properties of these solitons are studied as a function of the parameters of the model considered, using a numerical technique known as relaxation. The results are compared to expectations based on qualitative arguments.
We study resurgence properties of partition function of SU(2) Chern-Simons theory (WRT invariant) on closed three-manifolds. We check explicitly that in various examples Borel transforms of asymptotic expansions posses expected analytic properties. I n examples that we study we observe that contribution of irreducible flat connections to the path integral can be recovered from asymptotic expansions around abelian flat connections. We also discuss connection to Floer instanton moduli spaces, disk instantons in 2d sigma models, and length spectra of complex geodesics on the A-polynomial curve.
Some time ago, the infrared limit of the Abelian Chern-Simons-Proca theory was investigated. In this letter, we show how the Chern-Simons-Proca theory can emerge as an effective low energy theory. Our result is obtained by means of a procedure that t akes into account the proliferation, or dilution, of topological defects presented in the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا