ﻻ يوجد ملخص باللغة العربية
The maximal extension of supersymmetric Chern-Simons theory coupled to fundamental matter has $mathcal{N} = 3$ supersymmetry. In this short note, we provide the explicit form of the action for the mass-deformed $mathcal{N} = 3$ supersymmetric $U(N)$ Chern-Simons-Matter theory. The theory admits a unique triplet mass deformation term consistent with supersymmetry. We explicitly construct the mass-deformed $mathcal{N} = 3$ theory in $mathcal{N} = 1$ superspace using a fundamental and an anti-fundamental superfield.
We study $mathcal{N} = 3$ supersymmetric Chern-Simons-matter theory coupled to matter in the fundamental representation of $SU(N)$. In the t Hooft large $N$ limit, we compute the exact $2 to 2$ scattering amplitudes of the fundamental scalar superfie
We study Chern-Simons theory on 3-manifolds M that are circle-bundles over 2-dimensional orbifolds S by the method of Abelianisation. This method, which completely sidesteps the issue of having to integrate over the moduli space of non-Abelian flat c
We compute the two, three point function of the opearators in the spin zero multiplet of ${cal N}=2$ Supersymmetric vector matter Chern-Simons theory at large $N$ and at all orders of t Hooft coupling by solving the Schwinger-Dyson equation. Schwinge
We consider the $U(1)$ Chern-Simons gauge theory defined in a general closed oriented 3-manifold $M$; the functional integration is used to compute the normalized partition function and the expectation values of the link holonomies. The nonperturbati
We advocate that a generalized Kronheimer construction of the Kahler quotient crepant resolution $mathcal{M}_zeta longrightarrow mathbb{C}^3/Gamma$ of an orbifold singularity where $Gammasubset mathrm{SU(3)}$ is a finite subgroup naturally defines th