ﻻ يوجد ملخص باللغة العربية
We examine the energetics of $Q$-balls in Maxwell-Chern-Simons theory in two space dimensions. Whereas gauged $Q$-balls are unallowed in this dimension in the absence of a Chern-Simons term due to a divergent electromagnetic energy, the addition of a Chern-Simons term introduces a gauge field mass and renders finite the otherwise-divergent electromagnetic energy of the $Q$-ball. Similar to the case of gauged $Q$-balls, Maxwell-Chern-Simons $Q$-balls have a maximal charge. The properties of these solitons are studied as a function of the parameters of the model considered, using a numerical technique known as relaxation. The results are compared to expectations based on qualitative arguments.
The Maxwell-Chern-Simons gauge theory with charged scalar fields is analyzed at two loop level. The effective potential for the scalar fields is derived in the closed form, and studied both analytically and numerically. It is shown that the U(1) symm
In this paper, from the $q$-gauge covariant condition we define the $q$-deformed Killing form and the second $q$-deformed Chern class for the quantum group $SU_{q}(2)$. Developing Zuminos method we introduce a $q$-deformed homotopy operator to comput
Noncommutative Maxwell-Chern-Simons theory in 3-dimensions is defined in terms of star product and noncommutative fields. Seiberg-Witten map is employed to write it in terms of ordinary fields. A parent action is introduced and the dual action is der
We canonically quantize $(2+1)$-dimensional electrodynamics including a higher-derivative Chern-Simons term. The effective theory describes a standard photon and an additional degree of freedom associated with a massive ghost. We find the Hamiltonian
We study the Cherenkov effect in the context of the Maxwell-Chern-Simons (MCS) limit of the Standard Model Extension. We present a method to determine the exact radiation rate for a point charge.