ترغب بنشر مسار تعليمي؟ اضغط هنا

PHANGS-ALMA: Arcsecond CO(2-1) Imaging of Nearby Star-Forming Galaxies

128   0   0.0 ( 0 )
 نشر من قبل Adam Leroy
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present PHANGS-ALMA, the first survey to map CO J=2-1 line emission at ~1 ~ 100pc spatial resolution from a representative sample of 90 nearby (d<~20 Mpc) galaxies that lie on or near the z=0 main sequence of star-forming galaxies. CO line emission traces the bulk distribution of molecular gas, which is the cold, star-forming phase of the interstellar medium. At the resolution achieved by PHANGS-ALMA, each beam reaches the size of a typical individual giant molecular cloud (GMC), so that these data can be used to measure the demographics, life-cycle, and physical state of molecular clouds across the population of galaxies where the majority of stars form at z=0. This paper describes the scientific motivation and background for the survey, sample selection, global properties of the targets, ALMA observations, and characteristics of the delivered ALMA data and derived data products. As the ALMA sample serves as the parent sample for parallel surveys with VLT/MUSE, HST, AstroSat, VLA, and other facilities, we include a detailed discussion of the sample selection. We detail the estimation of galaxy mass, size, star formation rate, CO luminosity, and other properties, compare estimates using different systems and provide best-estimate integrated measurements for each target. We also report the design and execution of the ALMA observations, which combine a Cycle~5 Large Program, a series of smaller programs, and archival observations. Finally, we present the first 1 resolution atlas of CO emission from nearby galaxies and describe the properties and contents of the first PHANGS-ALMA public data release.

قيم البحث

اقرأ أيضاً

High-redshift dusty star-forming galaxies with very high star formation rates (500 -- 3000 M$_odot$ yr$^{-1}$) are key to understanding the formation of the most extreme galaxies in the early Universe. Characterising the gas reservoir of these system s can reveal the driving factor behind the high star formation. Using molecular gas tracers like high-J CO lines, neutral carbon lines and the dust continuum, we can estimate the gas density and radiation field intensity in their interstellar medium. In this paper, we present high resolution($sim$0.4) observations of CO(7-6), [CI](2-1) and dust continuum of 3 lensed galaxies from the SPT-SMG sample at z$sim$3 with the Atacama Large Millimeter/submillimeter Array. Our sources have high intrinsic star-formation rates (>850 M$_odot$ yr$^{-1}$) and rather short depletion timescales (<100 Myr). Based on the $rm L_{[rm CI](2-1)}/ rm L_{rm CO(7-6)}$ and $rm L_{[rm CI](2-1)}/rm L_{rm IR}$ ratios, our sample galaxies exhibit higher radiation field intensity compared to other submillimetre galaxies but have similar gas densities. We perform visibility-based lens modelling on these objects to reconstruct the kinematics in the source plane. We find that the cold gas masses of the sources are compatible with simple dynamical mass estimates using ULIRG-like values of the CO-H$_2$ conversion factor $alpha_{rm CO}$ but not Milky Way-like values. We find diverse source kinematics in our sample: SPT0103-45 and SPT2147-50 are likely rotating disks while SPT2357-51 is a probable major merger. The analysis presented in the paper could be extended to a larger sample to determine better statistics of morphologies and interstellar medium properties of high-z dusty star-forming galaxies.
The properties of the molecular gas can shed light on the physical conditions of quasar host galaxies and the effect of feedback from accreting supermassive black holes. We present a new CO(2-1) survey of 23 z<0.1 Palomar-Green quasars conducted with the Atacama Large Millimeter/submillimeter Array. CO emission was successfully detected in 91% (21/23) of the objects, from which we derive CO luminosities, molecular gas masses, and velocity line widths. Together with CO(1-0) measurements in the literature for 32 quasars (detection rate 53%), there are 15 quasars with both CO(1-0) and CO(2-1) measurements and in total 40 sources with CO measurements. We find that the line ratio R_21 = L_CO(2-1)/L_CO(1-0) is subthermal, broadly consistent with nearby galaxies and other quasars previously studied. No clear correlation is found between R_21 and the intensity of the interstellar radiation field or the luminosity of the active nucleus. As with the general galaxy population, quasar host galaxies exhibit a strong, tight, linear L_IR-L_CO relation, with a normalization consistent with that of starburst systems. We investigate the molecular-to-total gas mass fraction with the aid of total gas masses inferred from dust masses previously derived from infrared observations. Although the scatter is considerable, the current data do not suggest that the CO-to-H_2 conversion factor of quasar host galaxies significantly differs from that of normal star-forming galaxies.
The Herschel Multi-tiered Extragalactic Survey (HerMES) has identified large numbers of dusty star-forming galaxies (DSFGs) over a wide range in redshift. A detailed understanding of these DSFGs is hampered by the limited spatial resolution of Hersch el. We present 870um 0.45 resolution imaging from the Atacama Large Millimeter/submillimeter Array (ALMA) of 29 HerMES DSFGs with far-infrared (FIR) flux densities in between the brightest of sources found by Herschel and fainter DSFGs found in ground-based sub-millimeter (sub-mm) surveys. We identify 62 sources down to the 5-sigma point-source sensitivity limit in our ALMA sample (sigma~0.2mJy), of which 6 are strongly lensed (showing multiple images) and 36 experience significant amplification (mu>1.1). To characterize the properties of the ALMA sources, we introduce and make use of uvmcmcfit, a publicly available Markov chain Monte Carlo analysis tool for interferometric observations of lensed galaxies. Our lens models tentatively favor intrinsic number counts for DSFGs with a steep fall off above 8mJy at 880um. Nearly 70% of the Herschel sources comprise multiple ALMA counterparts, consistent with previous research indicating that the multiplicity rate is high in bright sub-mm sources. Our ALMA sources are located significantly closer to each other than expected based on results from theoretical models as well as fainter DSFGs identified in the LABOCA ECDFS Submillimeter Survey. The high multiplicity rate and low projected separations argue in favor of interactions and mergers driving the prodigious emission from the brightest DSFGs as well as the sharp downturn above S_880=8mJy.
We study the r31=LCO(3-2)/LCO(1-0) luminosity line ratio in a sample of nearby (z < 0.05) galaxies: 25 star-forming galaxies (SFGs) from the xCOLD GASS survey, 36 hard X-ray selected AGN host galaxies from BASS and 37 infrared luminous galaxies from SLUGS. We find a trend for r31 to increase with star-formation efficiency (SFE). We model r31 using the UCL-PDR code and find that the gas density is the main parameter responsible for variation of r31, while the interstellar radiation field and cosmic ray ionization rate play only a minor role. We interpret these results to indicate a relation between SFE and gas density. We do not find a difference in the r31 value of SFGs and AGN host galaxies, when the galaxies are matched in SSFR (<r31>= 0.52 +/- 0.04 for SFGs and <r31> = 0.53 +/- 0.06 for AGN hosts). According to the results of UCL-PDR models, the X-rays can contribute to the enhancement of the CO line ratio, but only for strong X-ray fluxes and for high gas density (nH > 10$^4$ cm-3). We find a mild tightening of the Kennicutt-Schmidt relation when we use the molecular gas mass surface density traced by CO(3-2) (Pearson correlation coefficient R=0.83), instead of the molecular gas mass surface density traced by CO(1-0) (R=0.78), but the increase in correlation is not statistically significant (p-value=0.06). This suggests that the CO(3-2) line can be reliably used to study the relation between SFR and molecular gas for normal SFGs at high redshift, and to compare it with studies of low-redshift galaxies, as is common practice.
We present an innovative and widely applicable approach for the detection and classification of stellar clusters, developed for the PHANGS-HST Treasury Program, an $NUV$-to-$I$ band imaging campaign of 38 spiral galaxies. Our pipeline first generates a unified master source list for stars and candidate clusters, to enable a self-consistent inventory of all star formation products. To distinguish cluster candidates from stars, we introduce the Multiple Concentration Index (MCI) parameter, and measure inner and outer MCIs to probe morphology in more detail than with a single, standard concentration index (CI). We improve upon cluster candidate selection, jointly basing our criteria on expectations for MCI derived from synthetic cluster populations and published cluster catalogues, yielding model and empirical selection regions (respectively). Selection purity (confirmed clusters versus candidates, assessed via human-based classification) is high (up to 70%) for moderately luminous sources in the empirical selection region, and somewhat lower overall (outside the region or fainter). The number of candidates rises steeply with decreasing luminosity, but pipeline-integrated Machine Learning (ML) classification prevents this from being problematic. We quantify the performance of our PHANGS-HST methods in comparison to LEGUS for a sample of four galaxies in common to both surveys, finding overall agreement with 50-75% of human verified star clusters appearing in both catalogues, but also subtle differences attributable to specific choices adopted by each project. The PHANGS-HST ML-classified Class 1 or 2 catalogues reach $sim1$ magnitude fainter, $sim2times$ lower stellar mass, and are $2{-}5times$ larger in number, than attained in the human classified samples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا