ﻻ يوجد ملخص باللغة العربية
We study the r31=LCO(3-2)/LCO(1-0) luminosity line ratio in a sample of nearby (z < 0.05) galaxies: 25 star-forming galaxies (SFGs) from the xCOLD GASS survey, 36 hard X-ray selected AGN host galaxies from BASS and 37 infrared luminous galaxies from SLUGS. We find a trend for r31 to increase with star-formation efficiency (SFE). We model r31 using the UCL-PDR code and find that the gas density is the main parameter responsible for variation of r31, while the interstellar radiation field and cosmic ray ionization rate play only a minor role. We interpret these results to indicate a relation between SFE and gas density. We do not find a difference in the r31 value of SFGs and AGN host galaxies, when the galaxies are matched in SSFR (<r31>= 0.52 +/- 0.04 for SFGs and <r31> = 0.53 +/- 0.06 for AGN hosts). According to the results of UCL-PDR models, the X-rays can contribute to the enhancement of the CO line ratio, but only for strong X-ray fluxes and for high gas density (nH > 10$^4$ cm-3). We find a mild tightening of the Kennicutt-Schmidt relation when we use the molecular gas mass surface density traced by CO(3-2) (Pearson correlation coefficient R=0.83), instead of the molecular gas mass surface density traced by CO(1-0) (R=0.78), but the increase in correlation is not statistically significant (p-value=0.06). This suggests that the CO(3-2) line can be reliably used to study the relation between SFR and molecular gas for normal SFGs at high redshift, and to compare it with studies of low-redshift galaxies, as is common practice.
Both the CO(2-1) and CO(1-0) lines are used to trace the mass of molecular gas in galaxies. Translating the molecular gas mass estimates between studies using different lines requires a good understanding of the behaviour of the CO(2-1)-to-CO(1-0) ra
While molecular gas mass is usually derived from $^{12}$CO($J$=1-0) - the most fundamental line to explore molecular gas - it is often derived from $^{12}$CO($J$=2-1) assuming a constant $^{12}$CO($J$=2-1)/$^{12}$CO($J$=1-0) line ratio ($R_{2/1}$). W
We present PHANGS-ALMA, the first survey to map CO J=2-1 line emission at ~1 ~ 100pc spatial resolution from a representative sample of 90 nearby (d<~20 Mpc) galaxies that lie on or near the z=0 main sequence of star-forming galaxies. CO line emissio
We present Atacama Large Millimeter/sub-millimeter Array (ALMA) observations towards 27 low-redshift ($0.02< z<0.2$) star-forming galaxies taken from the Valparaiso ALMA/APEX Line Emission Survey (VALES). We perform stacking analyses of the $^{12}$CO
We describe an archival project using Cycle 0 data from the Atacama Large Millimeter/submilleter Array to survey the CO/CN line ratio in 17 nearby galaxies. CN is an interesting molecule that traces dense gas exposed to ultraviolet radiation and its