ترغب بنشر مسار تعليمي؟ اضغط هنا

HerMES: ALMA Imaging of Herschel-selected Dusty Star-forming Galaxies

100   0   0.0 ( 0 )
 نشر من قبل Robert Bussmann
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Herschel Multi-tiered Extragalactic Survey (HerMES) has identified large numbers of dusty star-forming galaxies (DSFGs) over a wide range in redshift. A detailed understanding of these DSFGs is hampered by the limited spatial resolution of Herschel. We present 870um 0.45 resolution imaging from the Atacama Large Millimeter/submillimeter Array (ALMA) of 29 HerMES DSFGs with far-infrared (FIR) flux densities in between the brightest of sources found by Herschel and fainter DSFGs found in ground-based sub-millimeter (sub-mm) surveys. We identify 62 sources down to the 5-sigma point-source sensitivity limit in our ALMA sample (sigma~0.2mJy), of which 6 are strongly lensed (showing multiple images) and 36 experience significant amplification (mu>1.1). To characterize the properties of the ALMA sources, we introduce and make use of uvmcmcfit, a publicly available Markov chain Monte Carlo analysis tool for interferometric observations of lensed galaxies. Our lens models tentatively favor intrinsic number counts for DSFGs with a steep fall off above 8mJy at 880um. Nearly 70% of the Herschel sources comprise multiple ALMA counterparts, consistent with previous research indicating that the multiplicity rate is high in bright sub-mm sources. Our ALMA sources are located significantly closer to each other than expected based on results from theoretical models as well as fainter DSFGs identified in the LABOCA ECDFS Submillimeter Survey. The high multiplicity rate and low projected separations argue in favor of interactions and mergers driving the prodigious emission from the brightest DSFGs as well as the sharp downturn above S_880=8mJy.

قيم البحث

اقرأ أيضاً

The largest Herschel extragalactic surveys, H-ATLAS and HerMES, have selected a sample of ultrared dusty, star-forming galaxies (DSFGs) with rising SPIRE flux densities ($S_{500} > S_{350} > S_{250}$; so-called 500 $mu$m-risers) as an efficient way f or identifying DSFGs at higher redshift ($z > 4$). In this paper, we present a large Spitzer follow-up program of 300 Herschel ultrared DSFGs. We have obtained high-resolution ALMA, NOEMA, and SMA data for 63 of them, which allow us to securely identify the Spitzer/IRAC counterparts and classify them as gravitationally lensed or unlensed. Within the 63 ultrared sources with high-resolution data, $sim$65% appear to be unlensed, and $sim$27% are resolved into multiple components. We focus on analyzing the unlensed sample by directly performing multi-wavelength spectral energy distribution (SED) modeling to derive their physical properties and compare with the more numerous $z sim 2$ DSFG population. The ultrared sample has a median redshift of 3.3, stellar mass of 3.7 $times$ 10$^{11}$ $M_{odot}$, star formation rate (SFR) of 730 $M_{odot}$yr$^{-1}$, total dust luminosity of 9.0 $times$ 10$^{12}$ $L_{odot}$, dust mass of 2.8 $times$ 10$^9$ $M_{odot}$, and V-band extinction of 4.0, which are all higher than those of the ALESS DSFGs. Based on the space density, SFR density, and stellar mass density estimates, we conclude that our ultrared sample cannot account for the majority of the star-forming progenitors of the massive, quiescent galaxies found in infrared surveys. Our sample contains the rarer, intrinsically most dusty, luminous and massive galaxies in the early universe that will help us understand the physical drivers of extreme star formation.
The South Pole Telescope has discovered one hundred gravitationally lensed, high-redshift, dusty, star-forming galaxies (DSFGs). We present 0.5 resolution 870um Atacama Large Millimeter/submillimeter Array imaging of a sample of 47 DSFGs spanning z=1 .9-5.7, and construct gravitational lens models of these sources. Our visibility-based lens modeling incorporates several sources of residual interferometric calibration uncertainty, allowing us to properly account for noise in the observations. At least 70% of the sources are strongly lensed by foreground galaxies (mu_870um > 2), with a median magnification mu_870um = 6.3, extending to mu_870um > 30. We compare the intrinsic size distribution of the strongly lensed sources to a similar number of unlensed DSFGs and find no significant differences in spite of a bias between the magnification and intrinsic source size. This may indicate that the true size distribution of DSFGs is relatively narrow. We use the source sizes to constrain the wavelength at which the dust optical depth is unity and find this wavelength to be correlated with the dust temperature. This correlation leads to discrepancies in dust mass estimates of a factor of 2 compared to estimates using a single value for this wavelength. We investigate the relationship between the [CII] line and the far-infrared luminosity and find that the same correlation between the [CII]L_FIR ratio and Sigma_FIR found for low-redshift star-forming galaxies applies to high-redshift galaxies and extends at least two orders of magnitude higher in Sigma_FIR. This lends further credence to the claim that the compactness of the IR-emitting region is the controlling parameter in establishing the [CII] deficit.
92 - R. J. Ivison 2016
Until recently, only a handful of dusty, star-forming galaxies (DSFGs) were known at $z>4$, most of them significantly amplified by gravitational lensing. Here, we have increased the number of such DSFGs substantially, selecting galaxies from the uni quely wide 250-, 350- and 500-$mu$m Herschel-ATLAS imaging survey on the basis of their extremely red far-infrared colors and faint 350- and 500-$mu$m flux densities - ergo they are expected to be largely unlensed, luminous, rare and very distant. The addition of ground-based continuum photometry at longer wavelengths from the JCMT and APEX allows us to identify the dust peak in their SEDs, better constraining their redshifts. We select the SED templates best able to determine photometric redshifts using a sample of 69 high-redshift, lensed DSFGs, then perform checks to assess the impact of the CMB on our technique, and to quantify the systematic uncertainty associated with our photometric redshifts, $sigma=0.14,(1+z)$, using a sample of 25 galaxies with spectroscopic redshifts, each consistent with our color selection. For Herschel-selected ultrared galaxies with typical colors of $S_{500}/S_{250}sim 2.2$ and $S_{500}/S_{350}sim 1.3$ and flux densities, $S_{500}sim 50,$mJy, we determine a median redshift, $hat{z}_{rm phot}=3.66$, an interquartile redshift range, 3.30$-$4.27, with a median rest-frame 8$-$1000-$mu$m luminosity, $hat{L}_{rm IR}$, of $1.3times 10^{13},$L$_odot$. A third lie at $z>4$, suggesting a space density, $rho_{z>4}$, of $approx 6 times 10^{-7},$Mpc$^{-3}$. Our sample contains the most luminous known star-forming galaxies, and the most over-dense cluster of starbursting proto-ellipticals yet found.
We present high-fidelity, 30 milliarcsecond (200-pc) resolution ALMA rest-frame 240 $mu$m observations of cold dust emission in three typical main-sequence star-forming galaxies (SFGs) at $z sim 3$ in the Hubble Ultra-Deep Field (HUDF). The cold dust is distributed within the smooth disk-like central regions of star formation $1 - 3$ kpc in diameter, despite their complex and disturbed rest-frame UV and optical morphologies. No dust substructures or clumps are seen down to $simeq 1- 3$ $M_odot$yr$^{-1}$ (1$sigma$) per 200-pc beam. No dust emission is observed at the locations of UV-emitting clumps, which lie $simeq 2-10$ kpc from the bulk of star formation. Clumpy substructures can contribute no more than $1-7$% of the total star formation in these galaxies (3$sigma$ upper limits). The lack of star-forming substructures in our HUDF galaxies is to be contrasted with the multiple substructures characteristic of submillimeter-selected galaxies (SMGs) at the same cosmic epoch, particularly the far-IR-bright SMGs with similarly high-fidelity ALMA observations of Hodge et al. (2019). Individual star-forming substructures in these SMGs contain $sim10-30$% of their total star formation. A substructure in these SMGs is often comparably bright in the far-infrared as (or in some cases brighter than) our typical SFGs, suggesting that these SMGs originate from a class of disruptive event involving multiple objects at the scale of our HUDF galaxies. The scale of the disruptive event found in our main-sequence SFGs, characterized by the lack of star-forming substructures at our resolution and sensitivity, could be less violent, e.g., gas-rich disk instability or minor mergers.
Using the Atacama Large Millimeter/submillimeter Array (ALMA), we have conducted a blind redshift survey in the 3 mm atmospheric transmission window for 26 strongly lensd dusty star-forming galaxies (DSFGs) selected with the South Pole Telescope (SPT ). The sources were selected to have S_1.4mm>20 mJy and a dust-like spectrum and, to remove low-z sources, not have bright radio (S_843MHz<6mJy) or far-infrared counterparts (S_100um<1 Jy, S_60um<200mJy). We robustly detect 44 line features in our survey, which we identify as redshifted emission lines of 12CO, 13CO, [CI], H2O, and H2O+. We find one or more spectral features in 23 sources yielding a ~90% detection rate for this survey; in 12 of these sources we detect multiple lines, while in 11 sources we detect only a single line. For the sources with only one detected line, we break the redshift degeneracy with additional spectroscopic observations if available, or infer the most likely line identification based on photometric data. This yields secure redshifts for ~70% of the sample. The three sources with no lines detected are tentatively placed in the redshift desert between 1.7<z<2.0. The resulting mean redshift of our sample is <z>=3.5. This finding is in contrast to the redshift distribution of radio-identified DSFGs, which have a significantly lower mean redshift of <z>=2.3 and for which only 10-15% of the population is expected to be at z>3. We discuss the effect of gravitational lensing on the redshift distribution and compare our measured redshift distribution to that of models in the literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا