ﻻ يوجد ملخص باللغة العربية
We present an innovative and widely applicable approach for the detection and classification of stellar clusters, developed for the PHANGS-HST Treasury Program, an $NUV$-to-$I$ band imaging campaign of 38 spiral galaxies. Our pipeline first generates a unified master source list for stars and candidate clusters, to enable a self-consistent inventory of all star formation products. To distinguish cluster candidates from stars, we introduce the Multiple Concentration Index (MCI) parameter, and measure inner and outer MCIs to probe morphology in more detail than with a single, standard concentration index (CI). We improve upon cluster candidate selection, jointly basing our criteria on expectations for MCI derived from synthetic cluster populations and published cluster catalogues, yielding model and empirical selection regions (respectively). Selection purity (confirmed clusters versus candidates, assessed via human-based classification) is high (up to 70%) for moderately luminous sources in the empirical selection region, and somewhat lower overall (outside the region or fainter). The number of candidates rises steeply with decreasing luminosity, but pipeline-integrated Machine Learning (ML) classification prevents this from being problematic. We quantify the performance of our PHANGS-HST methods in comparison to LEGUS for a sample of four galaxies in common to both surveys, finding overall agreement with 50-75% of human verified star clusters appearing in both catalogues, but also subtle differences attributable to specific choices adopted by each project. The PHANGS-HST ML-classified Class 1 or 2 catalogues reach $sim1$ magnitude fainter, $sim2times$ lower stellar mass, and are $2{-}5times$ larger in number, than attained in the human classified samples.
The sensitivity and angular resolution of photometric surveys executed by the Hubble Space Telescope (HST) enable studies of individual star clusters in galaxies out to a few tens of megaparsecs. The fitting of spectral energy distributions (SEDs) of
We present the results of a proof-of-concept experiment which demonstrates that deep learning can successfully be used for production-scale classification of compact star clusters detected in HST UV-optical imaging of nearby spiral galaxies (D < 20 M
We present PHANGS-ALMA, the first survey to map CO J=2-1 line emission at ~1 ~ 100pc spatial resolution from a representative sample of 90 nearby (d<~20 Mpc) galaxies that lie on or near the z=0 main sequence of star-forming galaxies. CO line emissio
When completed, the PHANGS-HST project will provide a census of roughly 50,000 compact star clusters and associations, as well as human morphological classifications for roughly 20,000 of those objects. These large numbers motivated the development o
The PHANGS program is building the first dataset to enable the multi-phase, multi-scale study of star formation across the nearby spiral galaxy population. This effort is enabled by large Treasury programs with ALMA, VLT/MUSE, and HST, with which we