ﻻ يوجد ملخص باللغة العربية
The linear contextual bandit literature is mostly focused on the design of efficient learning algorithms for a given representation. However, a contextual bandit problem may admit multiple linear representations, each one with different characteristics that directly impact the regret of the learning algorithm. In particular, recent works showed that there exist good representations for which constant problem-dependent regret can be achieved. In this paper, we first provide a systematic analysis of the different definitions of good representations proposed in the literature. We then propose a novel selection algorithm able to adapt to the best representation in a set of $M$ candidates. We show that the regret is indeed never worse than the regret obtained by running LinUCB on the best representation (up to a $ln M$ factor). As a result, our algorithm achieves constant regret whenever a good representation is available in the set. Furthermore, we show that the algorithm may still achieve constant regret by implicitly constructing a good representation, even when none of the initial representations is good. Finally, we empirically validate our theoretical findings in a number of standard contextual bandit problems.
We consider the linear contextual bandit problem with resource consumption, in addition to reward generation. In each round, the outcome of pulling an arm is a reward as well as a vector of resource consumptions. The expected values of these outcomes
In this paper, we consider online learning in generalized linear contextual bandits where rewards are not immediately observed. Instead, rewards are available to the decision-maker only after some delay, which is unknown and stochastic. We study the
Standard approaches to decision-making under uncertainty focus on sequential exploration of the space of decisions. However, textit{simultaneously} proposing a batch of decisions, which leverages available resources for parallel experimentation, has
Thompson Sampling is one of the oldest heuristics for multi-armed bandit problems. It is a randomized algorithm based on Bayesian ideas, and has recently generated significant interest after several studies demonstrated it to have better empirical pe
Contextual bandits are widely used in Internet services from news recommendation to advertising, and to Web search. Generalized linear models (logistical regression in particular) have demonstrated stronger performance than linear models in many appl