ترغب بنشر مسار تعليمي؟ اضغط هنا

Linear Contextual Bandits with Knapsacks

181   0   0.0 ( 0 )
 نشر من قبل Shipra Agrawal
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the linear contextual bandit problem with resource consumption, in addition to reward generation. In each round, the outcome of pulling an arm is a reward as well as a vector of resource consumptions. The expected values of these outcomes depend linearly on the context of that arm. The budget/capacity constraints require that the total consumption doesnt exceed the budget for each resource. The objective is once again to maximize the total reward. This problem turns out to be a common generalization of classic linear contextual bandits (linContextual), bandits with knapsacks (BwK), and the online stochastic packing problem (OSPP). We present algorithms with near-optimal regret bounds for this problem. Our bounds compare favorably to results on the unstructured version of the problem where the relation between the contexts and the outcomes could be arbitrary, but the algorithm only competes against a fixed set of policies accessible through an optimization oracle. We combine techniques from the work on linContextual, BwK, and OSPP in a nontrivial manner while also tackling new difficulties that are not present in any of these special cases.



قيم البحث

اقرأ أيضاً

We consider a contextual version of multi-armed bandit problem with global knapsack constraints. In each round, the outcome of pulling an arm is a scalar reward and a resource consumption vector, both dependent on the context, and the global knapsack constraints require the total consumption for each resource to be below some pre-fixed budget. The learning agent competes with an arbitrary set of context-dependent policies. This problem was introduced by Badanidiyuru et al. (2014), who gave a computationally inefficient algorithm with near-optimal regret bounds for it. We give a computationally efficient algorithm for this problem with slightly better regret bounds, by generalizing the approach of Agarwal et al. (2014) for the non-constrained version of the problem. The computational time of our algorithm scales logarithmically in the size of the policy space. This answers the main open question of Badanidiyuru et al. (2014). We also extend our results to a variant where there are no knapsack constraints but the objective is an arbitrary Lipschitz concave function of the sum of outcome vectors.
Thompson Sampling is one of the oldest heuristics for multi-armed bandit problems. It is a randomized algorithm based on Bayesian ideas, and has recently generated significant interest after several studies demonstrated it to have better empirical pe rformance compared to the state-of-the-art methods. However, many questions regarding its theoretical performance remained open. In this paper, we design and analyze a generalization of Thompson Sampling algorithm for the stochastic contextual multi-armed bandit problem with linear payoff functions, when the contexts are provided by an adaptive adversary. This is among the most important and widely studi
Bandits with Knapsacks (BwK) is a general model for multi-armed bandits under supply/budget constraints. While worst-case regret bounds for BwK are well-understood, we present three results that go beyond the worst-case perspective. First, we provide upper and lower bounds which amount to a full characterization for logarithmic, instance-dependent regret rates. Second, we consider simple regret in BwK, which tracks algorithms performance in a given round, and prove that it is small in all but a few rounds. Third, we provide a general reduction from BwK to bandits which takes advantage of some known helpful structure, and apply this reduction to combinatorial semi-bandits, linear contextual bandits, and multinomial-logit bandits. Our results build on the BwK algorithm from citet{AgrawalDevanur-ec14}, providing new analyses thereof.
We unify two prominent lines of work on multi-armed bandits: bandits with knapsacks (BwK) and combinatorial semi-bandits. The former concerns limited resources consumed by the algorithm, e.g., limited supply in dynamic pricing. The latter allows a hu ge number of actions but assumes combinatorial structure and additional feedback to make the problem tractable. We define a common generalization, support it with several motivating examples, and design an algorithm for it. Our regret bounds are comparable with those for BwK and combinatorial semi- bandits.
78 - Lihong Li , Yu Lu , Dengyong Zhou 2017
Contextual bandits are widely used in Internet services from news recommendation to advertising, and to Web search. Generalized linear models (logistical regression in particular) have demonstrated stronger performance than linear models in many appl ications where rewards are binary. However, most theoretical analyses on contextual bandits so far are on linear bandits. In this work, we propose an upper confidence bound based algorithm for generalized linear contextual bandits, which achieves an $tilde{O}(sqrt{dT})$ regret over $T$ rounds with $d$ dimensional feature vectors. This regret matches the minimax lower bound, up to logarithmic terms, and improves on the best previous result by a $sqrt{d}$ factor, assuming the number of arms is fixed. A key component in our analysis is to establish a new, sharp finite-sample confidence bound for maximum-likelihood estimates in generalized linear models, which may be of independent interest. We also analyze a simpler upper confidence bound algorithm, which is useful in practice, and prove it to have optimal regret for certain cases.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا