ترغب بنشر مسار تعليمي؟ اضغط هنا

Delay-Adaptive Learning in Generalized Linear Contextual Bandits

151   0   0.0 ( 0 )
 نشر من قبل Renyuan Xu
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we consider online learning in generalized linear contextual bandits where rewards are not immediately observed. Instead, rewards are available to the decision-maker only after some delay, which is unknown and stochastic. We study the performance of two well-known algorithms adapted to this delayed setting: one based on upper confidence bounds, and the other based on Thompson sampling. We describe modifications on how these two algorithms should be adapted to handle delays and give regret characterizations for both algorithms. Our results contribute to the broad landscape of contextual bandits literature by establishing that both algorithms can be made to be robust to delays, thereby helping clarify and reaffirm the empirical success of these two algorithms, which are widely deployed in modern recommendation engines.



قيم البحث

اقرأ أيضاً

78 - Lihong Li , Yu Lu , Dengyong Zhou 2017
Contextual bandits are widely used in Internet services from news recommendation to advertising, and to Web search. Generalized linear models (logistical regression in particular) have demonstrated stronger performance than linear models in many appl ications where rewards are binary. However, most theoretical analyses on contextual bandits so far are on linear bandits. In this work, we propose an upper confidence bound based algorithm for generalized linear contextual bandits, which achieves an $tilde{O}(sqrt{dT})$ regret over $T$ rounds with $d$ dimensional feature vectors. This regret matches the minimax lower bound, up to logarithmic terms, and improves on the best previous result by a $sqrt{d}$ factor, assuming the number of arms is fixed. A key component in our analysis is to establish a new, sharp finite-sample confidence bound for maximum-likelihood estimates in generalized linear models, which may be of independent interest. We also analyze a simpler upper confidence bound algorithm, which is useful in practice, and prove it to have optimal regret for certain cases.
We study two randomized algorithms for generalized linear bandits, GLM-TSL and GLM-FPL. GLM-TSL samples a generalized linear model (GLM) from the Laplace approximation to the posterior distribution. GLM-FPL fits a GLM to a randomly perturbed history of past rewards. We prove $tilde{O}(d sqrt{n log K})$ bounds on the $n$-round regret of GLM-TSL and GLM-FPL, where $d$ is the number of features and $K$ is the number of arms. The regret bound of GLM-TSL improves upon prior work and the regret bound of GLM-FPL is the first of its kind. We apply both GLM-TSL and GLM-FPL to logistic and neural network bandits, and show that they perform well empirically. In more complex models, GLM-FPL is significantly faster. Our results showcase the role of randomization, beyond sampling from the posterior, in exploration.
We study locally differentially private (LDP) bandits learning in this paper. First, we propose simple black-box reduction frameworks that can solve a large family of context-free bandits learning problems with LDP guarantee. Based on our frameworks, we can improve previous best results for private bandits learning with one-point feedback, such as private Bandits Convex Optimization, and obtain the first result for Bandits Convex Optimization (BCO) with multi-point feedback under LDP. LDP guarantee and black-box nature make our frameworks more attractive in real applications compared with previous specifically designed and relatively weaker differentially private (DP) context-free bandits algorithms. Further, we extend our $(varepsilon, delta)$-LDP algorithm to Generalized Linear Bandits, which enjoys a sub-linear regret $tilde{O}(T^{3/4}/varepsilon)$ and is conjectured to be nearly optimal. Note that given the existing $Omega(T)$ lower bound for DP contextual linear bandits (Shariff & Sheffe, 2018), our result shows a fundamental difference between LDP and DP contextual bandits learning.
In the stochastic linear contextual bandit setting there exist several minimax procedures for exploration with policies that are reactive to the data being acquired. In practice, there can be a significant engineering overhead to deploy these algorit hms, especially when the dataset is collected in a distributed fashion or when a human in the loop is needed to implement a different policy. Exploring with a single non-reactive policy is beneficial in such cases. Assuming some batch contexts are available, we design a single stochastic policy to collect a good dataset from which a near-optimal policy can be extracted. We present a theoretical analysis as well as numerical experiments on both synthetic and real-world datasets.
We propose the Generalized Policy Elimination (GPE) algorithm, an oracle-efficient contextual bandit (CB) algorithm inspired by the Policy Elimination algorithm of cite{dudik2011}. We prove the first regret optimality guarantee theorem for an oracle- efficient CB algorithm competing against a nonparametric class with infinite VC-dimension. Specifically, we show that GPE is regret-optimal (up to logarithmic factors) for policy classes with integrable entropy. For classes with larger entropy, we show that the core techniques used to analyze GPE can be used to design an $varepsilon$-greedy algorithm with regret bound matching that of the best algorithms to date. We illustrate the applicability of our algorithms and theorems with examples of large nonparametric policy classes, for which the relevant optimization oracles can be efficiently implemented.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا