ترغب بنشر مسار تعليمي؟ اضغط هنا

Domain-Invariant Projection Learning for Zero-Shot Recognition

210   0   0.0 ( 0 )
 نشر من قبل Zhiwu Lu
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Zero-shot learning (ZSL) aims to recognize unseen object classes without any training samples, which can be regarded as a form of transfer learning from seen classes to unseen ones. This is made possible by learning a projection between a feature space and a semantic space (e.g. attribute space). Key to ZSL is thus to learn a projection function that is robust against the often large domain gap between the seen and unseen classes. In this paper, we propose a novel ZSL model termed domain-invariant projection learning (DIPL). Our model has two novel components: (1) A domain-invariant feature self-reconstruction task is introduced to the seen/unseen class data, resulting in a simple linear formulation that casts ZSL into a min-min optimization problem. Solving the problem is non-trivial, and a novel iterative algorithm is formulated as the solver, with rigorous theoretic algorithm analysis provided. (2) To further align the two domains via the learned projection, shared semantic structure among seen and unseen classes is explored via forming superclasses in the semantic space. Extensive experiments show that our model outperforms the state-of-the-art alternatives by significant margins.

قيم البحث

اقرأ أيضاً

373 - Aoxue Li , Zhiwu Lu , Jiechao Guan 2018
Zero-shot learning (ZSL) aims to transfer knowledge from seen classes to unseen ones so that the latter can be recognised without any training samples. This is made possible by learning a projection function between a feature space and a semantic spa ce (e.g. attribute space). Considering the seen and unseen classes as two domains, a big domain gap often exists which challenges ZSL. Inspired by the fact that an unseen class is not exactly `unseen if it belongs to the same superclass as a seen class, we propose a novel inductive ZSL model that leverages superclasses as the bridge between seen and unseen classes to narrow the domain gap. Specifically, we first build a class hierarchy of multiple superclass layers and a single class layer, where the superclasses are automatically generated by data-driven clustering over the semantic representations of all seen and unseen class names. We then exploit the superclasses from the class hierarchy to tackle the domain gap challenge in two aspects: deep feature learning and projection function learning. First, to narrow the domain gap in the feature space, we integrate a recurrent neural network (RNN) defined with the superclasses into a convolutional neural network (CNN), in order to enforce the superclass hierarchy. Second, to further learn a transferrable projection function for ZSL, a novel projection function learning method is proposed by exploiting the superclasses to align the two domains. Importantly, our transferrable feature and projection learning methods can be easily extended to a closely related task -- few-shot learning (FSL). Extensive experiments show that the proposed model significantly outperforms the state-of-the-art alternatives in both ZSL and FSL tasks.
Zero-shot object recognition or zero-shot learning aims to transfer the object recognition ability among the semantically related categories, such as fine-grained animal or bird species. However, the images of different fine-grained objects tend to m erely exhibit subtle differences in appearance, which will severely deteriorate zero-shot object recognition. To reduce the superfluous information in the fine-grained objects, in this paper, we propose to learn the redundancy-free features for generalized zero-shot learning. We achieve our motivation by projecting the original visual features into a new (redundancy-free) feature space and then restricting the statistical dependence between these two feature spaces. Furthermore, we require the projected features to keep and even strengthen the category relationship in the redundancy-free feature space. In this way, we can remove the redundant information from the visual features without losing the discriminative information. We extensively evaluate the performance on four benchmark datasets. The results show that our redundancy-free feature based generalized zero-shot learning (RFF-GZSL) approach can achieve competitive results compared with the state-of-the-arts.
464 - Meng Ye , Yuhong Guo 2018
Zero-shot learning transfers knowledge from seen classes to novel unseen classes to reduce human labor of labelling data for building new classifiers. Much effort on zero-shot learning however has focused on the standard multi-class setting, the more challenging multi-label zero-shot problem has received limited attention. In this paper we propose a transfer-aware embedding projection approach to tackle multi-label zero-shot learning. The approach projects the label embedding vectors into a low-dimensional space to induce better inter-label relationships and explicitly facilitate information transfer from seen labels to unseen labels, while simultaneously learning a max-margin multi-label classifier with the projected label embeddings. Auxiliary information can be conveniently incorporated to guide the label embedding projection to further improve label relation structures for zero-shot knowledge transfer. We conduct experiments for zero-shot multi-label image classification. The results demonstrate the efficacy of the proposed approach.
In zero-shot learning (ZSL), conditional generators have been widely used to generate additional training features. These features can then be used to train the classifiers for testing data. However, some testing data are considered hard as they lie close to the decision boundaries and are prone to misclassification, leading to performance degradation for ZSL. In this paper, we propose to learn clusterable features for ZSL problems. Using a Conditional Variational Autoencoder (CVAE) as the feature generator, we project the original features to a new feature space supervised by an auxiliary classification loss. To further increase clusterability, we fine-tune the features using Gaussian similarity loss. The clusterable visual features are not only more suitable for CVAE reconstruction but are also more separable which improves classification accuracy. Moreover, we introduce Gaussian noise to enlarge the intra-class variance of the generated features, which helps to improve the classifiers robustness. Our experiments on SUN,CUB, and AWA2 datasets show consistent improvement over previous state-of-the-art ZSL results by a large margin. In addition to its effectiveness on zero-shot classification, experiments show that our method to increase feature clusterability benefits few-shot learning algorithms as well.
In computer vision applications, such as domain adaptation (DA), few shot learning (FSL) and zero-shot learning (ZSL), we encounter new objects and environments, for which insufficient examples exist to allow for training models from scratch, and met hods that adapt existing models, trained on the presented training environment, to the new scenario are required. We propose a novel visual attribute encoding method that encodes each image as a low-dimensional probability vector composed of prototypical part-type probabilities. The prototypes are learnt to be representative of all training data. At test-time we utilize this encoding as an input to a classifier. At test-time we freeze the encoder and only learn/adapt the classifier component to limited annotated labels in FSL; new semantic attributes in ZSL. We conduct extensive experiments on benchmark datasets. Our method outperforms state-of-art methods trained for the specific contexts (ZSL, FSL, DA).

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا