ﻻ يوجد ملخص باللغة العربية
In the framework of photonics with all-dielectric nanoantennas, sub-micro-metric spheres can be exploited for a plethora of applications including vanishing back-scattering, enhanced directivity of a light emitter, beam steering, and large Purcell factors. Here, the potential of a high-throughput fabrication method based on aerosol-spray is shown to form quasi-perfect sub-micrometric spheres of polycrystalline TiO 2 . Spectroscopic investigation of light scattering from individual particles reveals sharp resonances in agreement with Mie theory, neat structural colors, and a high directivity. Owing to the high permittivity and lossless material in use, this method opens the way toward the implementation of isotropic meta-materials and forward-directional sources with magnetic responses at visible and near-UV frequencies, not accessible with conventional Si- and Ge-based Mie resonators.
Dielectric Mie nanoresonators showing strong light-matter interaction at the nanoscale may enable new functionality in photonic devices. Recently, strong magneto-optical effects have been observed in magneto-optical nanophotonic devices due to the el
High space-bandwidth product with high spatial phase sensitivity is indispensable for a single-shot quantitative phase microscopy (QPM) system. It opens avenue for widespread applications of QPM in the field of biomedical imaging. Temporally low cohe
There is an ongoing debate about the relative importance of structural change versus doping charge carriers on the mechanism of superconductivity in Fe-based materials. Elucidating this issue is a major challenge since it would require a large number
In this paper we discuss the force exerted by the field of an optical cavity on a polarizable dipole. We show that the modification of the cavity modes due to interaction with the dipole significantly alters the properties of the force. In particular
Future technologies underpinning high-performance optical communications, ultrafast computations and compact biosensing will rely on densely packed reconfigurable optical circuitry based on nanophotonics. For many years, plasmonics was considered as