ﻻ يوجد ملخص باللغة العربية
Future technologies underpinning high-performance optical communications, ultrafast computations and compact biosensing will rely on densely packed reconfigurable optical circuitry based on nanophotonics. For many years, plasmonics was considered as the only available platform for nanoscale optics, but the recently emerged novel field of Mie resonant metaphotonics provides more practical alternatives for nanoscale optics by employing resonances in high-index dielectric nanoparticles and structures. In this mini-review we highlight some recent trends in the physics of dielectric Mie-resonant nanostructures with high quality factor (Q factor) for efficient spatial and temporal control of light by employing multipolar resonances and the bound states in the continuum. We discuss a few applications of these concepts to nonlinear optics, nanolasers, subwavelength waveguiding, and sensing.
All-dielectric, sub-micrometric particles have been successfully exploited for light management in a plethora of applications at visible and near-infrared frequency. However, the investigation of the intricacies of the Mie resonances at the sub-wavel
We demonstrate the active tuning of all-dielectric metasurfaces exhibiting high-quality factor (high-Q) resonances. The active control is provided by embedding the asymmetric silicon meta-atoms with liquid crystals, which allows the relative index of
We study nonlinear response of a dimer composed of two identical Mie-resonant dielectric nanoparticles illuminated normally by a circularly polarized light. We develop a general theory describing hybridization of multipolar modes of the coupled nanop
High index dielectric nanostructure supports different types of resonant modes. However, it is very challenging to achieve high-Q factor in a single subwavelength dielectric nanoresonator due to non-hermtian property of the open system. Here, we pres
We demonstrate that directional electromagnetic scattering can be realized from a artificial Mie resonant strcuture which supports electric and magnetic dipole modes simultaneously. The directivity of the far-field radiation pattern can be switched b