ترغب بنشر مسار تعليمي؟ اضغط هنا

Circular displacement current induced anomalous magneto-optical effects in high index Mie resonators

126   0   0.0 ( 0 )
 نشر من قبل Lei Bi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dielectric Mie nanoresonators showing strong light-matter interaction at the nanoscale may enable new functionality in photonic devices. Recently, strong magneto-optical effects have been observed in magneto-optical nanophotonic devices due to the electromagnetic field localization. However, most reports so far have been focused on the enhancement of conventional magneto-optical effects. Here, we report the observation of circular displacement current induced anomalous magneto-optical effects in high-index-contrast Si/Ce:YIG/YIG/SiO2 Mie resonators. In particular, giant modulation of light intensity in transverse magnetic configuration up to 6.4 % under s-polarized incidence appears, which is non-existent in planar magneto-optical thin films. Apart from that, we observe a large rotation of transmitted light polarization in the longitudinal magnetic configuration under near normal incidence conditions, which is two orders of magnitude higher than for a planar magneto-optical thin film. These phenomena are essentially originated from the unique circular displacement current when exciting the magnetic resonance modes in the Mie resonators, which changes the incident electric field direction locally. Our work indicates an uncharted territory of light polarization control based on the complex modal profiles in all-dielectric magneto-optical Mie resonators and metasurfaces, which opens the door for versatile control of light propagation by magnetization for a variety of applications in vectoral magnetic field and biosensing, free space non-reciprocal photonic devices, magneto-optical imaging and optomagnetic memories.

قيم البحث

اقرأ أيضاً

We study nonlinear response of a dimer composed of two identical Mie-resonant dielectric nanoparticles illuminated normally by a circularly polarized light. We develop a general theory describing hybridization of multipolar modes of the coupled nanop articles, and reveal nonvanishing nonlinear circular dichroism (CD) in the second-harmonic generation (SHG) signal enhanced by the multipolar resonances in the dimer provided its axis is oriented under an angle to the crystalline lattice of the dielectric material. We present experimental results for this SHG-CD effect obtained for the AlGaAs dimers placed on an engineered substrate which confirm the basic prediction of our general multipolar hybridization theory.
Small perturbations in the dielectric environment around a high quality whispering gallery mode resonator usually lead to a frequency shift of the resonator modes directly proportional to the polarizability of the perturbation. Here, we report experi mental observations of strong frequency shifts that can be opposite and even exceed the contribution of the perturbations polarizability. The mode frequencies of a lithium niobate whispering gallery mode resonator are shifted using substrates of refractive indices ranging from 1.50 to 4.22. Both blue- and red-shifts are observed, as well as an increase in mode linewidth, when substrates are moved into the evanescent field of the whispering gallery mode. We compare the experimental results to a theoretical model by Foreman et al. and provide an additional intuitive explanation based on the Goos-Hanchen shift for the optical domain.
The magneto-optical activity, namely the polarization conversion capabilities of high-index, non-absorbing, core-shell dielectric nanospheres is theoretically analyzed. We show that, in analogy with their plasmonic counterparts, the polarization conv ersion in resonant dielectric particles is linked to the amount of electromagnetic field probing the magneto-optical material in the system. However, in strong contrast with plasmon nanoparticles, due to the peculiar distribution of the internal fields in resonant dielectric spheres, the magneto-optical response is fully governed by the magnetic (dipolar and quadrupolar) resonances with little effect of the electric ones.
In the framework of photonics with all-dielectric nanoantennas, sub-micro-metric spheres can be exploited for a plethora of applications including vanishing back-scattering, enhanced directivity of a light emitter, beam steering, and large Purcell fa ctors. Here, the potential of a high-throughput fabrication method based on aerosol-spray is shown to form quasi-perfect sub-micrometric spheres of polycrystalline TiO 2 . Spectroscopic investigation of light scattering from individual particles reveals sharp resonances in agreement with Mie theory, neat structural colors, and a high directivity. Owing to the high permittivity and lossless material in use, this method opens the way toward the implementation of isotropic meta-materials and forward-directional sources with magnetic responses at visible and near-UV frequencies, not accessible with conventional Si- and Ge-based Mie resonators.
We study inelastic resonant scattering of a Gaussian wave packet with the parameters close to a zero of the complex scattering coefficient. We demonstrate, both theoretically and experimentally, that such near-zero scattering can result in anomalousl y-large time delays and frequency shifts of the scattered wave packet. Furthermore, we reveal a close analogy of these anomalous shifts with the spatial and angular Goos-Hanchen optical beam shifts, which are amplified via quantum weak measurements. However, in contrast to other beam-shift and weak-measurement systems, we deal with a one-dimensional scalar wave without any intrinsic degrees of freedom. It is the non-Hermitian nature of the system that produces its rich and non-trivial behaviour. Our results are generic for any scattering problem, either quantum or classical. As an example, we consider the transmission of an optical pulse through a nano-fiber with a side-coupled toroidal micro-resonator. The zero of the transmission coefficient corresponds to the critical coupling conditions. Experimental measurements of the time delays near the critical-coupling parameters verify our weak-measurement theory and demonstrate amplification of the time delay from the typical inverse resonator linewidth scale to the pulse duration scale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا