ﻻ يوجد ملخص باللغة العربية
Athermal systems across a large range of length scales, ranging from foams and granular bead packings to crumpled metallic sheets, exhibit slow stress relaxation when compressed. Experimentally they show a non-monotonic stress response when decompressed somewhat after an initial compression, i.e. under a two-step, Kovacs-like protocol. It turns out that from this response one can tell the age of the system, suggesting an interpretation as a memory effect. In this work we use a model of an athermal jammed solid, specifically a binary mixture of soft harmonic spheres, to explore this phenomenon through in-silico experiments. Using extensive simulations under conditions analogous to those in experiment, we observe identical phenomenology in the stress response under a two--step protocol. Our model system also recovers the behaviour under a more recently studied three-step protocol, which consists of a compression followed by a decompression and then a final compression. We show that the observed response in both two-step and three-step protocols can be understood using Linear Response Theory. In particular, a linear scaling with age for the two-step protocol arises generically for slow linear responses with power law or logarithmic decay and does not in itself point to any underlying aging dynamics.
We demonstrate that irreversible structural reorganization is not necessary for the observation of yield behaviour in an amorphous solid. While the majority of solids strained to their yield point do indeed undergo an irreversible reorganization, we
Disordered biopolymer gels have striking mechanical properties including strong nonlinearities. In the case of athermal gels (such as collagen-I) the nonlinearity has long been associated with a crossover from a bending dominated to a stretching domi
The disordered microphases that develop in the high-temperature phase of systems with competing short-range attractive and long-range repulsive (SALR) interactions result in a rich array of distinct morphologies, such as cluster, void cluster and per
Due to their unique structural and mechanical properties, randomly-crosslinked polymer networks play an important role in many different fields, ranging from cellular biology to industrial processes. In order to elucidate how these properties are con
The onset of rigidity in interacting liquids, as they undergo a transition to a disordered solid, is associated with a dramatic rearrangement of the low-frequency vibrational spectrum. In this letter, we derive scaling forms for the singular dynamica