ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Affine Displacements and the Non-Linear Response of a Strained Amorphous Solid

75   0   0.0 ( 0 )
 نشر من قبل Peter Harrowell
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate that irreversible structural reorganization is not necessary for the observation of yield behaviour in an amorphous solid. While the majority of solids strained to their yield point do indeed undergo an irreversible reorganization, we find a significant fraction of solids exhibit yield via a reversible strain. We also demonstrate that large instantaneous strains in excess of the yield stress can result in complete stress relaxation, a result of the large non-affine motions driven by the applied strain. The empirical similarity of the dependence of the ratio of stress over strain on the non-affine mean squared displacement with that for the shear modulus obtained from quiescent liquid at non-zero temperature supports the proposition that rigidity depends on the size of the sampled configurational space only, and is insensitive as to how this space is sampled.



قيم البحث

اقرأ أيضاً

Sound attenuation in low temperature amorphous solids originates from their disordered structure. However, its detailed mechanism is still being debated. Here we analyze sound attenuation starting directly from the microscopic equations of motion. We derive an exact expression for the zero-temperature sound damping coefficient and verify that it agrees with results of earlier sound attenuation simulations. The small wavevector analysis of this expression shows that sound attenuation is primarily determined by the non-affine displacements contribution to the wave propagation coefficient coming from the frequency shell of the sound wave.
The holographic principle has proven successful in linking seemingly unrelated problems in physics; a famous example is the gauge-gravity duality. Recently, intriguing correspondences between the physics of soft matter and gravity are emerging, inclu ding strong similarities between the rheology of amorphous solids, effective field theories for elasticity and the physics of black holes. However, direct comparisons between theoretical predictions and experimental/simulation observations remain limited. Here, we study the effects of non-linear elasticity on the mechanical and thermodynamic properties of amorphous materials responding to shear, using effective field and gravitational theories. The predicted correlations among the non-linear elastic exponent, the yielding strain/stress and the entropy change due to shear are supported qualitatively by simulations of granular matter models. Our approach opens a path towards understanding complex mechanical responses of amorphous solids, such as mixed effects of shear softening and shear hardening, and offers the possibility to study the rheology of solid states and black holes in a unified framework.
Athermal systems across a large range of length scales, ranging from foams and granular bead packings to crumpled metallic sheets, exhibit slow stress relaxation when compressed. Experimentally they show a non-monotonic stress response when decompres sed somewhat after an initial compression, i.e. under a two-step, Kovacs-like protocol. It turns out that from this response one can tell the age of the system, suggesting an interpretation as a memory effect. In this work we use a model of an athermal jammed solid, specifically a binary mixture of soft harmonic spheres, to explore this phenomenon through in-silico experiments. Using extensive simulations under conditions analogous to those in experiment, we observe identical phenomenology in the stress response under a two--step protocol. Our model system also recovers the behaviour under a more recently studied three-step protocol, which consists of a compression followed by a decompression and then a final compression. We show that the observed response in both two-step and three-step protocols can be understood using Linear Response Theory. In particular, a linear scaling with age for the two-step protocol arises generically for slow linear responses with power law or logarithmic decay and does not in itself point to any underlying aging dynamics.
We study the local disorder in the deformation of amorphous materials by decomposing the particle displacements into a continuous, inhomogeneous field and the corresponding fluctuations. We compare these fields to the commonly used non-affine displac ements in an elastically deformed 2D Lennard-Jones glass. Unlike the non-affine field, the fluctuations are very localized, and exhibit a much smaller (and system size independent) correlation length, on the order of a particle diameter, supporting the applicability of the notion of local defects to such materials. We propose a scalar noise field to characterize the fluctuations, as an additional field for extended continuum models, e.g., to describe the localized irreversible events observed during plastic deformation.
We develop a formalism for computing the non-linear response of interacting integrable systems. Our results are asymptotically exact in the hydrodynamic limit where perturbing fields vary sufficiently slowly in space and time. We show that spatially resolved nonlinear response distinguishes interacting integrable systems from noninteracting ones, exemplifying this for the Lieb-Liniger gas. We give a prescription for computing finite-temperature Drude weights of arbitrary order, which is in excellent agreement with numerical evaluation of the third-order response of the XXZ spin chain. We identify intrinsically nonperturbative regimes of the nonlinear response of integrable systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا