ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear elasticity of disordered fiber networks

447   0   0.0 ( 0 )
 نشر من قبل Xiaoming Mao
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Disordered biopolymer gels have striking mechanical properties including strong nonlinearities. In the case of athermal gels (such as collagen-I) the nonlinearity has long been associated with a crossover from a bending dominated to a stretching dominated regime of elasticity. The physics of this crossover is related to the existence of a central-force isostatic point and to the fact that for most gels the bending modulus is small. This crossover induces scaling behavior for the elastic moduli. In particular, for linear elasticity such a scaling law has been demonstrated [Broedersz et al. Nature Physics, 2011 7, 983]. In this work we generalize the scaling to the nonlinear regime with a two-parameter scaling law involving three critical exponents. We test the scaling law numerically for two disordered lattice models, and find a good scaling collapse for the shear modulus in both the linear and nonlinear regimes. We compute all the critical exponents for the two lattice models and discuss the applicability of our results to real systems.



قيم البحث

اقرأ أيضاً

Due to their unique structural and mechanical properties, randomly-crosslinked polymer networks play an important role in many different fields, ranging from cellular biology to industrial processes. In order to elucidate how these properties are con trolled by the physical details of the network (textit{e.g.} chain-length and end-to-end distributions), we generate disordered phantom networks with different crosslinker concentrations $C$ and initial density $rho_{rm init}$ and evaluate their elastic properties. We find that the shear modulus computed at the same strand concentration for networks with the same $C$, which determines the number of chains and the chain-length distribution, depends strongly on the preparation protocol of the network, here controlled by $rho_{rm init}$. We rationalise this dependence by employing a generic stress-strain relation for polymer networks that does not rely on the specific form of the polymer end-to-end distance distribution. We find that the shear modulus of the networks is a non-monotonic function of the density of elastically-active strands, and that this behaviour has a purely entropic origin. Our results show that if short chains are abundant, as it is always the case for randomly-crosslinked polymer networks, the knowledge of the exact chain conformation distribution is essential for predicting correctly the elastic properties. Finally, we apply our theoretical approach to published experimental data, qualitatively confirming our interpretations.
Do nonlinear waves destroy Anderson localization? Computational and experimental studies yield subdiffusive nonequilibrium wave packet spreading. Chaotic dynamics and phase decoherence assumptions are used for explaining the data. We perform a quanti tative analysis of the nonequilibrium chaos assumption, and compute the time dependence of main chaos indicators - Lyapunov exponents and deviation vector distributions. We find a slowing down of chaotic dynamics, which does not cross over into regular dynamics up to the largest observed time scales, still being fast enough to allow for a thermalization of the spreading wave packet. Strongly localized chaotic spots meander through the system as time evolves. Our findings confirm for the first time that nonequilibrium chaos and phase decoherence persist, fueling the prediction of a complete delocalization.
The holographic principle has proven successful in linking seemingly unrelated problems in physics; a famous example is the gauge-gravity duality. Recently, intriguing correspondences between the physics of soft matter and gravity are emerging, inclu ding strong similarities between the rheology of amorphous solids, effective field theories for elasticity and the physics of black holes. However, direct comparisons between theoretical predictions and experimental/simulation observations remain limited. Here, we study the effects of non-linear elasticity on the mechanical and thermodynamic properties of amorphous materials responding to shear, using effective field and gravitational theories. The predicted correlations among the non-linear elastic exponent, the yielding strain/stress and the entropy change due to shear are supported qualitatively by simulations of granular matter models. Our approach opens a path towards understanding complex mechanical responses of amorphous solids, such as mixed effects of shear softening and shear hardening, and offers the possibility to study the rheology of solid states and black holes in a unified framework.
It is known by now that amorphous solids at zero temperature do not possess a nonlinear elasticity theory: besides the shear modulus which exists, all the higher order coefficients do not exist in the thermodynamic limit. Here we show that the same p henomenon persists up to temperatures comparable to the glass transition. The zero temperature mechanism due to the prevalence of dangerous plastic modes of the Hessian matrix is replaced by anomalous stress fluctuations that lead to the divergence of the variances of the higher order elastic coefficients. The conclusion is that in amorphous solids elasticity can never be decoupled from plasticity: the nonlinear response is very substantially plastic.
The disordered microphases that develop in the high-temperature phase of systems with competing short-range attractive and long-range repulsive (SALR) interactions result in a rich array of distinct morphologies, such as cluster, void cluster and per colated (gel-like) fluids. These different structural regimes exhibit complex relaxation dynamics with significant relaxation heterogeneity and slowdown. The overall relationship between structure and configurational sampling schemes, however, remains largely uncharted. In this article, the disordered microphases of a schematic SALR model are thoroughly characterized, and structural relaxation functions adapted to each regime are devised. The sampling efficiency of various advanced Monte Carlo (MC) sampling schemes--Virtual-Move (VMMC), Aggregation-Volume-Bias (AVBMC) and Event-Chain (ECMC)--is then assessed. A combination of VMMC and AVBMC is found to be computationally most efficient for cluster fluids and ECMC to become relatively more efficient as density increases. These results offer a complete description of the equilibrium disordered phase of a simple microphase former as well as dynamical benchmarks for other sampling schemes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا