ﻻ يوجد ملخص باللغة العربية
The onset of rigidity in interacting liquids, as they undergo a transition to a disordered solid, is associated with a dramatic rearrangement of the low-frequency vibrational spectrum. In this letter, we derive scaling forms for the singular dynamical response of disordered viscoelastic networks near both jamming and rigidity percolation. Using effective-medium theory, we extract critical exponents, invariant scaling combinations and analytical formulas for universal scaling functions near these transitions. Our scaling forms describe the behavior in space and time near the various onsets of rigidity, for rigid and floppy phases and the crossover region, including diverging length and time scales at the transitions. We expect that these behaviors can be measured in systems ranging from colloidal suspensions to anomalous charge-density fluctuations of strange metals.
Due to their unique structural and mechanical properties, randomly-crosslinked polymer networks play an important role in many different fields, ranging from cellular biology to industrial processes. In order to elucidate how these properties are con
Disordered biopolymer gels have striking mechanical properties including strong nonlinearities. In the case of athermal gels (such as collagen-I) the nonlinearity has long been associated with a crossover from a bending dominated to a stretching domi
The disordered microphases that develop in the high-temperature phase of systems with competing short-range attractive and long-range repulsive (SALR) interactions result in a rich array of distinct morphologies, such as cluster, void cluster and per
Athermal systems across a large range of length scales, ranging from foams and granular bead packings to crumpled metallic sheets, exhibit slow stress relaxation when compressed. Experimentally they show a non-monotonic stress response when decompres
Dynamical heterogeneities -- strong fluctuations near the glass transition -- are believed to be crucial to explain much of the glass transition phenomenology. One possible hypothesis for their origin is that they emerge from soft (Goldstone) modes a