ترغب بنشر مسار تعليمي؟ اضغط هنا

Rydberg quantum computation with nuclear spins in two-electron neutral atoms

185   0   0.0 ( 0 )
 نشر من قبل Xiaofeng Shi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Xiao-Feng Shi




اسأل ChatGPT حول البحث

Alkaline-earth-like~(AEL) atoms with two valence electrons and a nonzero nuclear spin can be excited to Rydberg state for quantum computing. Typical AEL ground states possess no hyperfine splitting, but unfortunately a GHz-scale splitting seems necessary for Rydberg excitation. Though strong magnetic fields can induce a GHz-scale splitting, weak fields are desirable to avoid noise in experiments. Here, we provide two solutions to this outstanding challenge with realistic data of well-studied AEL isotopes. In the first theory, the two nuclear spin qubit states $|0rangle$ and $|1rangle$ are excited to Rydberg states $|rrangle$ with detuning $Delta$ and 0, respectively, where a MHz-scale detuning $Delta$ arises from a weak magnetic field on the order of 1~G. With a proper ratio between $Delta$ and $Omega$, the qubit state $|1rangle$ can be fully excited to the Rydberg state while $|0rangle$ remains there. In the second theory, we show that by choosing appropriate intermediate states a two-photon Rydberg excitation can proceed with only one nuclear spin qubit state. The second theory is applicable whatever the magnitude of the magnetic field is. These theories bring a versatile means for quantum computation by combining the broad applicability of Rydberg blockade and the incomparable advantages of nuclear-spin quantum memory in two-electron neutral atoms.



قيم البحث

اقرأ أيضاً

We develop a formalism for photoionization (PI) and potential energy curves (PECs) of Rydberg atoms in ponderomotive optical lattices and apply it to examples covering several regimes of the optical-lattice depth. The effect of lattice-induced PI on Rydberg-atom lifetime ranges from noticeable to highly dominant when compared with natural decay. The PI behavior is governed by the generally rapid decrease of the PI cross sections as a function of angular-momentum ($ell$), and by lattice-induced $ell$-mixing across the optical-lattice PECs. In GHz-deep lattices, $ell$-mixing leads to a rich PEC structure, and the significant low-$ell$ PI cross sections are distributed over many lattice-mixed Rydberg states. In lattices less than several tens-of-MHz deep, atoms on low-$ell$ PECs are essentially $ell$-mixing-free and maintain large PI cross sections, while atoms on high-$ell$ PECs trend towards being PI-free. Characterization of PI in GHz-deep Rydberg-atom lattices may be beneficial for optical control and quantum-state manipulation of Rydberg atoms, while data on PI in shallower lattices are potentially useful in high-precision spectroscopy and quantum-computing applications of lattice-confined Rydberg atoms.
We demonstrate the first deterministic entanglement of two individually addressed neutral atoms using a Rydberg blockade mediated controlled-NOT gate. Parity oscillation measurements reveal an entanglement fidelity of $F=0.58pm0.04$, which is above t he entanglement threshold of $F=0.5$, without any correction for atom loss, and $F=0.71pm0.05$ after correcting for background collisional losses. The fidelity results are shown to be in good agreement with a detailed error model.
We describe the fabrication and construction of a setup for creating lattices of magnetic microtraps for ultracold atoms on an atom chip. The lattice is defined by lithographic patterning of a permanent magnetic film. Patterned magnetic-film atom chi ps enable a large variety of trapping geometries over a wide range of length scales. We demonstrate an atom chip with a lattice constant of 10 $mu$m, suitable for experiments in quantum information science employing the interaction between atoms in highly-excited Rydberg energy levels. The active trapping region contains lattice regions with square and hexagonal symmetry, with the two regions joined at an interface. A structure of macroscopic wires, cut out of a silver foil, was mounted under the atom chip in order to load ultracold $^{87}$Rb atoms into the microtraps. We demonstrate loading of atoms into the square and hexagonal lattice sections simultaneously and show resolved imaging of individual lattice sites. Magnetic-film lattices on atom chips provide a versatile platform for experiments with ultracold atoms, in particular for quantum information science and quantum simulation.
We show that the dipole-dipole interaction between three identical Rydberg atoms can give rise to bound trimer states. The microscopic origin of these states is fundamentally different from Efimov physics. Two stable trimer configurations exist where the atoms form the vertices of an equilateral triangle in a plane perpendicular to a static electric field. The triangle edge length typically exceeds $Rapprox 2,mutext{m}$, and each configuration is two-fold degenerate due to Kramers degeneracy. The depth of the potential wells and the triangle edge length can be controlled by external parameters. We establish the Borromean nature of the trimer states, analyze the quantum dynamics in the potential wells and describe methods for their production and detection.
We present a novel spectroscopic method for probing the insitu~density of quantum gases. We exploit the density-dependent energy shift of highly excited {Rydberg} states, which is of the order $10$MHz,/,1E14,cm$^{text{-3}}$ for rubidium~for triplet s -wave scattering. The energy shift combined with a density gradient can be used to localize Rydberg atoms in density shells with a spatial resolution less than optical wavelengths, as demonstrated by scanning the excitation laser spatially across the density distribution. We use this Rydberg spectroscopy to measure the mean density addressed by the Rydberg excitation lasers, and to monitor the phase transition from a thermal gas to a Bose-Einstein condensate (BEC).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا