ترغب بنشر مسار تعليمي؟ اضغط هنا

Photoionization of Rydberg Atoms in Optical Lattices

115   0   0.0 ( 0 )
 نشر من قبل Ryan Cardman
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a formalism for photoionization (PI) and potential energy curves (PECs) of Rydberg atoms in ponderomotive optical lattices and apply it to examples covering several regimes of the optical-lattice depth. The effect of lattice-induced PI on Rydberg-atom lifetime ranges from noticeable to highly dominant when compared with natural decay. The PI behavior is governed by the generally rapid decrease of the PI cross sections as a function of angular-momentum ($ell$), and by lattice-induced $ell$-mixing across the optical-lattice PECs. In GHz-deep lattices, $ell$-mixing leads to a rich PEC structure, and the significant low-$ell$ PI cross sections are distributed over many lattice-mixed Rydberg states. In lattices less than several tens-of-MHz deep, atoms on low-$ell$ PECs are essentially $ell$-mixing-free and maintain large PI cross sections, while atoms on high-$ell$ PECs trend towards being PI-free. Characterization of PI in GHz-deep Rydberg-atom lattices may be beneficial for optical control and quantum-state manipulation of Rydberg atoms, while data on PI in shallower lattices are potentially useful in high-precision spectroscopy and quantum-computing applications of lattice-confined Rydberg atoms.



قيم البحث

اقرأ أيضاً

We experimentally realize Rydberg excitations in Bose-Einstein condensates of rubidium atoms loaded into quasi one-dimensional traps and in optical lattices. Our results for condensates expanded to different sizes in the one-dimensional trap agree we ll with the intuitive picture of a chain of Rydberg excitations. We also find that the Rydberg excitations in the optical lattice do not destroy the phase coherence of the condensate, and our results in that system agree with the picture of localized collective Rydberg excitations including nearest-neighbour blockade.
We show that resonant dipole-dipole interactions between Rydberg atoms in a triangular lattice can give rise to artificial magnetic fields for spin excitations. We consider the coherent dipole-dipole coupling between $np$ and $ns$ Rydberg states and derive an effective spin-1/2 Hamiltonian for the $np$ excitations. By breaking time-reversal symmetry via external fields we engineer complex hopping amplitudes for transitions between two rectangular sub-lattices. The phase of these hopping amplitudes depends on the direction of the hop. This gives rise to a staggered, artificial magnetic field which induces non-trivial topological effects. We calculate the single-particle band structure and investigate its Chern numbers as a function of the lattice parameters and the detuning between the two sub-lattices. We identify extended parameter regimes where the Chern number of the lowest band is $C=1$ or $C=2$.
163 - Peter Schauss 2017
Finite-range interacting spin models are the simplest models to study the effect of beyond nearest-neighbour interactions and access new effects caused by the range of the interactions. Recent experiments have reached the regime of dominant interacti ons in Ising quantum magnets via optical coupling of trapped neutral atoms to Rydberg states. This approach allows for the tunability of all relevant terms in an Ising Hamiltonian with $1/r^6$ interactions in a transverse and longitudinal field. This review summarizes the recent progress of these implementations in Rydberg lattices with site-resolved detection. The strong correlations in this quantum Ising model have been observed in several experiments up to the point of crystallization. In systems with a diameter small compared to the Rydberg blockade radius, the number of excitations is maximally one in the so-called superatom regime.
We describe the fabrication and construction of a setup for creating lattices of magnetic microtraps for ultracold atoms on an atom chip. The lattice is defined by lithographic patterning of a permanent magnetic film. Patterned magnetic-film atom chi ps enable a large variety of trapping geometries over a wide range of length scales. We demonstrate an atom chip with a lattice constant of 10 $mu$m, suitable for experiments in quantum information science employing the interaction between atoms in highly-excited Rydberg energy levels. The active trapping region contains lattice regions with square and hexagonal symmetry, with the two regions joined at an interface. A structure of macroscopic wires, cut out of a silver foil, was mounted under the atom chip in order to load ultracold $^{87}$Rb atoms into the microtraps. We demonstrate loading of atoms into the square and hexagonal lattice sections simultaneously and show resolved imaging of individual lattice sites. Magnetic-film lattices on atom chips provide a versatile platform for experiments with ultracold atoms, in particular for quantum information science and quantum simulation.
We show that the dipole-dipole interaction between three identical Rydberg atoms can give rise to bound trimer states. The microscopic origin of these states is fundamentally different from Efimov physics. Two stable trimer configurations exist where the atoms form the vertices of an equilateral triangle in a plane perpendicular to a static electric field. The triangle edge length typically exceeds $Rapprox 2,mutext{m}$, and each configuration is two-fold degenerate due to Kramers degeneracy. The depth of the potential wells and the triangle edge length can be controlled by external parameters. We establish the Borromean nature of the trimer states, analyze the quantum dynamics in the potential wells and describe methods for their production and detection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا