ترغب بنشر مسار تعليمي؟ اضغط هنا

Deterministic entanglement of two neutral atoms via Rydberg blockade

318   0   0.0 ( 0 )
 نشر من قبل Mark Saffman
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate the first deterministic entanglement of two individually addressed neutral atoms using a Rydberg blockade mediated controlled-NOT gate. Parity oscillation measurements reveal an entanglement fidelity of $F=0.58pm0.04$, which is above the entanglement threshold of $F=0.5$, without any correction for atom loss, and $F=0.71pm0.05$ after correcting for background collisional losses. The fidelity results are shown to be in good agreement with a detailed error model.



قيم البحث

اقرأ أيضاً

Over the past few years we have built an apparatus to demonstrate the entanglement of neutral Rb atoms at optically resolvable distances using the strong interactions between Rydberg atoms. Here we review the basic physics involved in this process: l oading of single atoms into individual traps, state initialization, state readout, single atom rotations, blockade-mediated manipulation of Rydberg atoms, and demonstration of entanglement.
We demonstrate experimentally that a single Rb atom excited to the $79d_{5/2}$ level blocks the subsequent excitation of a second atom located more than $10 murm m$ away. The observed probability of double excitation of $sim 30%$ is consistent with a theoretical model based on calculations of the long range dipole-dipole interaction between atoms.
Neutral atom array serves as an ideal platform to study the quantum logic gates, where intense efforts have been devoted to improve the two-qubit gate fidelity. We report our recent findings in constructing a different type of two-qubit controlled-PH ASE quantum gate protocol with neutral atoms enabled by Rydberg blockade, which aims at both robustness and high-fidelity. It relies upon modulated driving pulse with specially tailored smooth waveform to gain appropriate phase accumulations for quantum gates. The major features include finishing gate operation within a single pulse, not necessarily requiring individual site addressing, not sensitive to the exact value of blockade shift while suppressing population leakage error and rotation error. We anticipate its fidelity to be reasonably high under realistic considerations for errors such as atomic motion, laser power fluctuation, power imbalance, spontaneous emission and so on. Moreover, we hope that such type of protocol may inspire future improvements in quantum gate designs for other categories of qubit platforms and new applications in other areas of quantum optimal control.
122 - Y. Zeng , P. Xu , X.D. He 2017
Quantum entanglement is crucial for simulating and understanding exotic physics of strongly correlated many-body systems, such as high--temperature superconductors, or fractional quantum Hall states. The entanglement of non-identical particles exhibi ts richer physics of strong many-body correlations and offers more opportunities for quantum computation, especially with neutral atoms where in contrast to ions the interparticle interaction is widely tunable by Feshbach resonances. Moreover, the inter-species entanglement forms a basis for the properties of various compound systems, ranging from Bose-Bose mixtures to photosynthetic light-harvesting complexes. So far, the inter-species entanglement has only been obtained for trapped ions. Here we report on the experimental realization of entanglement of two neutral atoms of different isotopes. A ${}^{87}mathrm{Rb}$ atom and a ${}^{85}mathrm{Rb}$ atom are confined in two single--atom optical traps separated by 3.8 $mu$m. Creating a strong Rydberg blockade, we demonstrate a heteronuclear controlled--NOT (C--NOT) quantum gate and generate a heteronuclear entangled state, with raw fidelities $0.73 pm 0.01$ and $0.59 pm 0.03$, respectively. Our work, together with the technologies of single--qubit gate and C--NOT gate developed for identical atoms, can be used for simulating any many--body system with multi-species interactions. It also has applications in quantum computing and quantum metrology, since heteronuclear systems exhibit advantages in low crosstalk and in memory protection.
We present experimental results on two-qubit Rydberg blockade quantum gates and entanglement in a two-dimensional qubit array. Without post selection against atom loss we achieve a Bell state fidelity of $0.73pm 0.05$, the highest value reported to d ate. The experiments are performed in an array of single Cs atom qubits with a site to site spacing of $3.8 ~ murm m$. Using the standard protocol for a Rydberg blockade C$_Z$ gate together with single qubit operations we create Bell states and measure their fidelity using parity oscillations. We analyze the role of AC Stark shifts that occur when using two-photon Rydberg excitation and show how to tune experimental conditions for optimal gate fidelity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا