ترغب بنشر مسار تعليمي؟ اضغط هنا

PAC-learning gains of Turing machines over circuits and neural networks

313   0   0.0 ( 0 )
 نشر من قبل Brieuc Pinon
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A caveat to many applications of the current Deep Learning approach is the need for large-scale data. One improvement suggested by Kolmogorov Complexity results is to apply the minimum description length principle with computationally universal models. We study the potential gains in sample efficiency that this approach can bring in principle. We use polynomial-time Turing machines to represent computationally universal models and Boolean circuits to represent Artificial Neural Networks (ANNs) acting on finite-precision digits. Our analysis unravels direct links between our question and Computational Complexity results. We provide lower and upper bounds on the potential gains in sample efficiency between the MDL applied with Turing machines instead of ANNs. Our bounds depend on the bit-size of the input of the Boolean function to be learned. Furthermore, we highlight close relationships between classical open problems in Circuit Complexity and the tightness of these.

قيم البحث

اقرأ أيضاً

It is well known that recurrent neural networks (RNNs) faced limitations in learning long-term dependencies that have been addressed by memory structures in long short-term memory (LSTM) networks. Matrix neural networks feature matrix representation which inherently preserves the spatial structure of data and has the potential to provide better memory structures when compared to canonical neural networks that use vector representation. Neural Turing machines (NTMs) are novel RNNs that implement notion of programmable computers with neural network controllers to feature algorithms that have copying, sorting, and associative recall tasks. In this paper, we study the augmentation of memory capacity with a matrix representation of RNNs and NTMs (MatNTMs). We investigate if matrix representation has a better memory capacity than the vector representations in conventional neural networks. We use a probabilistic model of the memory capacity using Fisher information and investigate how the memory capacity for matrix representation networks are limited under various constraints, and in general, without any constraints. In the case of memory capacity without any constraints, we found that the upper bound on memory capacity to be $N^2$ for an $Ntimes N$ state matrix. The results from our experiments using synthetic algorithmic tasks show that MatNTMs have a better learning capacity when compared to its counterparts.
While on some natural distributions, neural-networks are trained efficiently using gradient-based algorithms, it is known that learning them is computationally hard in the worst-case. To separate hard from easy to learn distributions, we observe the property of local correlation: correlation between local patterns of the input and the target label. We focus on learning deep neural-networks using a gradient-based algorithm, when the target function is a tree-structured Boolean circuit. We show that in this case, the existence of correlation between the gates of the circuit and the target label determines whether the optimization succeeds or fails. Using this result, we show that neural-networks can learn the (log n)-parity problem for most product distributions. These results hint that local correlation may play an important role in separating easy/hard to learn distributions. We also obtain a novel depth separation result, in which we show that a shallow network cannot express some functions, while there exists an efficient gradient-based algorithm that can learn the very same functions using a deep network. The negative expressivity result for shallow networks is obtained by a reduction from results in communication complexity, that may be of independent interest.
We make three related contributions motivated by the challenge of training stochastic neural networks, particularly in a PAC-Bayesian setting: (1) we show how averaging over an ensemble of stochastic neural networks enables a new class of emph{partia lly-aggregated} estimators; (2) we show that these lead to provably lower-variance gradient estimates for non-differentiable signed-output networks; (3) we reformulate a PAC-Bayesian bound for these networks to derive a directly optimisable, differentiable objective and a generalisation guarantee, without using a surrogate loss or loosening the bound. This bound is twice as tight as that of Letarte et al. (2019) on a similar network type. We show empirically that these innovations make training easier and lead to competitive guarantees.
116 - Lili Su , Pengkun Yang 2019
We consider training over-parameterized two-layer neural networks with Rectified Linear Unit (ReLU) using gradient descent (GD) method. Inspired by a recent line of work, we study the evolutions of network prediction errors across GD iterations, whic h can be neatly described in a matrix form. When the network is sufficiently over-parameterized, these matrices individually approximate {em an} integral operator which is determined by the feature vector distribution $rho$ only. Consequently, GD method can be viewed as {em approximately} applying the powers of this integral operator on the underlying/target function $f^*$ that generates the responses/labels. We show that if $f^*$ admits a low-rank approximation with respect to the eigenspaces of this integral operator, then the empirical risk decreases to this low-rank approximation error at a linear rate which is determined by $f^*$ and $rho$ only, i.e., the rate is independent of the sample size $n$. Furthermore, if $f^*$ has zero low-rank approximation error, then, as long as the width of the neural network is $Omega(nlog n)$, the empirical risk decreases to $Theta(1/sqrt{n})$. To the best of our knowledge, this is the first result showing the sufficiency of nearly-linear network over-parameterization. We provide an application of our general results to the setting where $rho$ is the uniform distribution on the spheres and $f^*$ is a polynomial. Throughout this paper, we consider the scenario where the input dimension $d$ is fixed.
We consider the dynamic of gradient descent for learning a two-layer neural network. We assume the input $xinmathbb{R}^d$ is drawn from a Gaussian distribution and the label of $x$ satisfies $f^{star}(x) = a^{top}|W^{star}x|$, where $ainmathbb{R}^d$ is a nonnegative vector and $W^{star} inmathbb{R}^{dtimes d}$ is an orthonormal matrix. We show that an over-parametrized two-layer neural network with ReLU activation, trained by gradient descent from random initialization, can provably learn the ground truth network with population loss at most $o(1/d)$ in polynomial time with polynomial samples. On the other hand, we prove that any kernel method, including Neural Tangent Kernel, with a polynomial number of samples in $d$, has population loss at least $Omega(1 / d)$.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا