ترغب بنشر مسار تعليمي؟ اضغط هنا

On Learning Over-parameterized Neural Networks: A Functional Approximation Perspective

117   0   0.0 ( 0 )
 نشر من قبل Lili Su
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider training over-parameterized two-layer neural networks with Rectified Linear Unit (ReLU) using gradient descent (GD) method. Inspired by a recent line of work, we study the evolutions of network prediction errors across GD iterations, which can be neatly described in a matrix form. When the network is sufficiently over-parameterized, these matrices individually approximate {em an} integral operator which is determined by the feature vector distribution $rho$ only. Consequently, GD method can be viewed as {em approximately} applying the powers of this integral operator on the underlying/target function $f^*$ that generates the responses/labels. We show that if $f^*$ admits a low-rank approximation with respect to the eigenspaces of this integral operator, then the empirical risk decreases to this low-rank approximation error at a linear rate which is determined by $f^*$ and $rho$ only, i.e., the rate is independent of the sample size $n$. Furthermore, if $f^*$ has zero low-rank approximation error, then, as long as the width of the neural network is $Omega(nlog n)$, the empirical risk decreases to $Theta(1/sqrt{n})$. To the best of our knowledge, this is the first result showing the sufficiency of nearly-linear network over-parameterization. We provide an application of our general results to the setting where $rho$ is the uniform distribution on the spheres and $f^*$ is a polynomial. Throughout this paper, we consider the scenario where the input dimension $d$ is fixed.

قيم البحث

اقرأ أيضاً

One of the mysteries in the success of neural networks is randomly initialized first order methods like gradient descent can achieve zero training loss even though the objective function is non-convex and non-smooth. This paper demystifies this surpr ising phenomenon for two-layer fully connected ReLU activated neural networks. For an $m$ hidden node shallow neural network with ReLU activation and $n$ training data, we show as long as $m$ is large enough and no two inputs are parallel, randomly initialized gradient descent converges to a globally optimal solution at a linear convergence rate for the quadratic loss function. Our analysis relies on the following observation: over-parameterization and random initialization jointly restrict every weight vector to be close to its initialization for all iterations, which allows us to exploit a strong convexity-like property to show that gradient descent converges at a global linear rate to the global optimum. We believe these insights are also useful in analyzing deep models and other first order methods.
86 - Chen Cai , Yusu Wang 2020
Graph Neural Networks (GNNs) have achieved a lot of success on graph-structured data. However, it is observed that the performance of graph neural networks does not improve as the number of layers increases. This effect, known as over-smoothing, has been analyzed mostly in linear cases. In this paper, we build upon previous results cite{oono2019graph} to further analyze the over-smoothing effect in the general graph neural network architecture. We show when the weight matrix satisfies the conditions determined by the spectrum of augmented normalized Laplacian, the Dirichlet energy of embeddings will converge to zero, resulting in the loss of discriminative power. Using Dirichlet energy to measure expressiveness of embedding is conceptually clean; it leads to simpler proofs than cite{oono2019graph} and can handle more non-linearities.
Nesterov SGD is widely used for training modern neural networks and other machine learning models. Yet, its advantages over SGD have not been theoretically clarified. Indeed, as we show in our paper, both theoretically and empirically, Nesterov SGD w ith any parameter selection does not in general provide acceleration over ordinary SGD. Furthermore, Nesterov SGD may diverge for step sizes that ensure convergence of ordinary SGD. This is in contrast to the classical results in the deterministic scenario, where the same step size ensures accelerated convergence of the Nesterovs method over optimal gradient descent. To address the non-acceleration issue, we introduce a compensation term to Nesterov SGD. The resulting algorithm, which we call MaSS, converges for same step sizes as SGD. We prove that MaSS obtains an accelerated convergence rates over SGD for any mini-batch size in the linear setting. For full batch, the convergence rate of MaSS matches the well-known accelerated rate of the Nesterovs method. We also analyze the practically important question of the dependence of the convergence rate and optimal hyper-parameters on the mini-batch size, demonstrating three distinct regimes: linear scaling, diminishing returns and saturation. Experimental evaluation of MaSS for several standard architectures of deep networks, including ResNet and convolutional networks, shows improved performance over SGD, Nesterov SGD and Adam.
This work tackles the problem of characterizing and understanding the decision boundaries of neural networks with piecewise linear non-linearity activations. We use tropical geometry, a new development in the area of algebraic geometry, to characteri ze the decision boundaries of a simple network of the form (Affine, ReLU, Affine). Our main finding is that the decision boundaries are a subset of a tropical hypersurface, which is intimately related to a polytope formed by the convex hull of two zonotopes. The generators of these zonotopes are functions of the network parameters. This geometric characterization provides new perspectives to three tasks. (i) We propose a new tropical perspective to the lottery ticket hypothesis, where we view the effect of different initializations on the tropical geometric representation of a networks decision boundaries. (ii) Moreover, we propose new tropical based optimization reformulations that directly influence the decision boundaries of the network for the task of network pruning. (iii) At last, we discuss the reformulation of the generation of adversarial attacks in a tropical sense. We demonstrate that one can construct adversaries in a new tropical setting by perturbing a specific set of decision boundaries by perturbing a set of parameters in the network.
336 - Mo Zhou , Rong Ge , Chi Jin 2021
While over-parameterization is widely believed to be crucial for the success of optimization for the neural networks, most existing theories on over-parameterization do not fully explain the reason -- they either work in the Neural Tangent Kernel reg ime where neurons dont move much, or require an enormous number of neurons. In practice, when the data is generated using a teacher neural network, even mildly over-parameterized neural networks can achieve 0 loss and recover the directions of teacher neurons. In this paper we develop a local convergence theory for mildly over-parameterized two-layer neural net. We show that as long as the loss is already lower than a threshold (polynomial in relevant parameters), all student neurons in an over-parameterized two-layer neural network will converge to one of teacher neurons, and the loss will go to 0. Our result holds for any number of student neurons as long as it is at least as large as the number of teacher neurons, and our convergence rate is independent of the number of student neurons. A key component of our analysis is the new characterization of local optimization landscape -- we show the gradient satisfies a special case of Lojasiewicz property which is different from local strong convexity or PL conditions used in previous work.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا