ترغب بنشر مسار تعليمي؟ اضغط هنا

Memory Capacity of Neural Turing Machines with Matrix Representation

164   0   0.0 ( 0 )
 نشر من قبل Rohitash Chandra
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

It is well known that recurrent neural networks (RNNs) faced limitations in learning long-term dependencies that have been addressed by memory structures in long short-term memory (LSTM) networks. Matrix neural networks feature matrix representation which inherently preserves the spatial structure of data and has the potential to provide better memory structures when compared to canonical neural networks that use vector representation. Neural Turing machines (NTMs) are novel RNNs that implement notion of programmable computers with neural network controllers to feature algorithms that have copying, sorting, and associative recall tasks. In this paper, we study the augmentation of memory capacity with a matrix representation of RNNs and NTMs (MatNTMs). We investigate if matrix representation has a better memory capacity than the vector representations in conventional neural networks. We use a probabilistic model of the memory capacity using Fisher information and investigate how the memory capacity for matrix representation networks are limited under various constraints, and in general, without any constraints. In the case of memory capacity without any constraints, we found that the upper bound on memory capacity to be $N^2$ for an $Ntimes N$ state matrix. The results from our experiments using synthetic algorithmic tasks show that MatNTMs have a better learning capacity when compared to its counterparts.



قيم البحث

اقرأ أيضاً

We consider the problem of predicting the next observation given a sequence of past observations, and consider the extent to which accurate prediction requires complex algorithms that explicitly leverage long-range dependencies. Perhaps surprisingly, our positive results show that for a broad class of sequences, there is an algorithm that predicts well on average, and bases its predictions only on the most recent few observation together with a set of simple summary statistics of the past observations. Specifically, we show that for any distribution over observations, if the mutual information between past observations and future observations is upper bounded by $I$, then a simple Markov model over the most recent $I/epsilon$ observations obtains expected KL error $epsilon$---and hence $ell_1$ error $sqrt{epsilon}$---with respect to the optimal predictor that has access to the entire past and knows the data generating distribution. For a Hidden Markov Model with $n$ hidden states, $I$ is bounded by $log n$, a quantity that does not depend on the mixing time, and we show that the trivial prediction algorithm based on the empirical frequencies of length $O(log n/epsilon)$ windows of observations achieves this error, provided the length of the sequence is $d^{Omega(log n/epsilon)}$, where $d$ is the size of the observation alphabet. We also establish that this result cannot be improved upon, even for the class of HMMs, in the following two senses: First, for HMMs with $n$ hidden states, a window length of $log n/epsilon$ is information-theoretically necessary to achieve expected $ell_1$ error $sqrt{epsilon}$. Second, the $d^{Theta(log n/epsilon)}$ samples required to estimate the Markov model for an observation alphabet of size $d$ is necessary for any computationally tractable learning algorithm, assuming the hardness of strongly refuting a certain class of CSPs.
A caveat to many applications of the current Deep Learning approach is the need for large-scale data. One improvement suggested by Kolmogorov Complexity results is to apply the minimum description length principle with computationally universal model s. We study the potential gains in sample efficiency that this approach can bring in principle. We use polynomial-time Turing machines to represent computationally universal models and Boolean circuits to represent Artificial Neural Networks (ANNs) acting on finite-precision digits. Our analysis unravels direct links between our question and Computational Complexity results. We provide lower and upper bounds on the potential gains in sample efficiency between the MDL applied with Turing machines instead of ANNs. Our bounds depend on the bit-size of the input of the Boolean function to be learned. Furthermore, we highlight close relationships between classical open problems in Circuit Complexity and the tightness of these.
A common lens to theoretically study neural net architectures is to analyze the functions they can approximate. However, the constructions from approximation theory often have unrealistic aspects, for example, reliance on infinite precision to memori ze target function values, which make these results potentially less meaningful. To address these issues, this work proposes a formal definition of statistically meaningful approximation which requires the approximating network to exhibit good statistical learnability. We present case studies on statistically meaningful approximation for two classes of functions: boolean circuits and Turing machines. We show that overparameterized feedforward neural nets can statistically meaningfully approximate boolean circuits with sample complexity depending only polynomially on the circuit size, not the size of the approximating network. In addition, we show that transformers can statistically meaningfully approximate Turing machines with computation time bounded by $T$, requiring sample complexity polynomial in the alphabet size, state space size, and $log (T)$. Our analysis introduces new tools for generalization bounds that provide much tighter sample complexity guarantees than the typical VC-dimension or norm-based bounds, which may be of independent interest.
In offline reinforcement learning (RL), we seek to utilize offline data to evaluate (or learn) policies in scenarios where the data are collected from a distribution that substantially differs from that of the target policy to be evaluated. Recent th eoretical advances have shown that such sample-efficient offline RL is indeed possible provided certain strong representational conditions hold, else there are lower bounds exhibiting exponential error amplification (in the problem horizon) unless the data collection distribution has only a mild distribution shift relative to the target policy. This work studies these issues from an empirical perspective to gauge how stable offline RL methods are. In particular, our methodology explores these ideas when using features from pre-trained neural networks, in the hope that these representations are powerful enough to permit sample efficient offline RL. Through extensive experiments on a range of tasks, we see that substantial error amplification does occur even when using such pre-trained representations (trained on the same task itself); we find offline RL is stable only under extremely mild distribution shift. The implications of these results, both from a theoretical and an empirical perspective, are that successful offline RL (where we seek to go beyond the low distribution shift regime) requires substantially stronger conditions beyond those which suffice for successful supervised learning.
Explaining the predictions of neural black-box models is an important problem, especially when such models are used in applications where user trust is crucial. Estimating the influence of training examples on a learned neural models behavior allows us to identify training examples most responsible for a given prediction and, therefore, to faithfully explain the output of a black-box model. The most generally applicable existing method is based on influence functions, which scale poorly for larger sample sizes and models. We propose gradient rollback, a general approach for influence estimation, applicable to neural models where each parameter update step during gradient descent touches a smaller number of parameters, even if the overall number of parameters is large. Neural matrix factorization models trained with gradient descent are part of this model class. These models are popular and have found a wide range of applications in industry. Especially knowledge graph embedding methods, which belong to this class, are used extensively. We show that gradient rollback is highly efficient at both training and test time. Moreover, we show theoretically that the difference between gradient rollbacks influence approximation and the true influence on a models behavior is smaller than known bounds on the stability of stochastic gradient descent. This establishes that gradient rollback is robustly estimating example influence. We also conduct experiments which show that gradient rollback provides faithful explanations for knowledge base completion and recommender datasets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا