ﻻ يوجد ملخص باللغة العربية
Although ferromagnets are found in all kinds of technological applications, only few substances are known to be intrinsically ferromagnetic at room temperature. In the past twenty years, a plethora of new artificial ferromagnetic materials have been found by introducing defects into non-magnetic host materials. In contrast to the intrinsic ferromagnetic materials, they offer an outstanding degree of material engineering freedom, provided one finds a type of defect to functionalize every possible host material to add magnetism to its intrinsic properties. Still, one controversial question remains: Are these materials really technologically relevant ferromagnets? To answer this question, in this work the emergence of a ferromagnetic phase upon ion irradiation is systematically investigated both theoretically and experimentally. Quantitative predictions are validated against experimental data from the literature of SiC hosts irradiated with high energy Ne ions and own experiments on low energy Ar ion irradiation of TiO$_2$ hosts. In the high energy regime, a bulk magnetic phase emerges, which is limited by host lattice amorphization, whereas at low ion energies an ultrathin magnetic layer forms at the surface and evolves into full magnetic percolation. Lowering the ion energy, the magnetic layer thickness reduces down to a bilayer, where a perpendicular magnetic anisotropy appears due to magnetic surface states.
The discoveries of intrinsically magnetic topological materials, including semimetals with a large anomalous Hall effect and axion insulators, have directed fundamental research in solid-state materials. Topological quantum chemistry has enabled the
Transition metal oxides show fascinating physical properties such as high temperature superconductivity, ferro- and antiferromagnetism, ferroelectricity or even multiferroicity. The enormous progress in oxide thin film technology allows us to integra
The structural and magnetic anomaly of the layered compound SrFeO$_{2}$ were examined by first principles density functional calculations and Monte Carlo simulations. The down-spin Fe 3$d$ electron occupies the $d_{z^2}$ level rather than the degener
In spin-density-functional theory for noncollinear magnetic materials, the Kohn-Sham system features exchange-correlation (xc) scalar potentials and magnetic fields. The significance of the xc magnetic fields is not very well explored; in particular,
Regression machine learning is widely applied to predict various materials. However, insufficient materials data usually leads to a poor performance. Here, we develop a new voting data-driven method that could generally improve the performance of reg