ﻻ يوجد ملخص باللغة العربية
Transition metal oxides show fascinating physical properties such as high temperature superconductivity, ferro- and antiferromagnetism, ferroelectricity or even multiferroicity. The enormous progress in oxide thin film technology allows us to integrate these materials with semiconducting, normal conducting, dielectric or non-linear optical oxides in complex oxide heterostructures, providing the basis for novel multi-functional materials and various device applications. Here, we report on the combination of ferromagnetic, semiconducting, metallic, and dielectric materials properties in thin films and artificial heterostructures using laser molecular beam epitaxy. We discuss the fabrication and characterization of oxide-based ferromagnetic tunnel junctions, transition metal-doped semiconductors, intrinsic multiferroics, and artificial ferroelectric/ferromagetic heterostructures - the latter allow for the detailed study of strain effects, forming the basis of spin-mechanics. For characterization we use X-ray diffraction, SQUID magnetometry, magnetotransport measurements, and advanced methods of transmission electron microscopy with the goal to correlate macroscopic physical properties with the microstructure of the thin films and heterostructures.
Recent advances in high-throughput experimentation for combinatorial studies have accelerated the discovery and analysis of materials across a wide range of compositions and synthesis conditions. However, many of the more powerful characterization me
Using resonant X-ray spectroscopies combined with density functional calculations, we find an asymmetric bi-axial strain-induced $d$-orbital response in ultra-thin films of the correlated metal LaNiO$_3$ which are not accessible in the bulk. The sign
The dielectric function of heteroepitaxial YBiO$_3$ grown on $a$-Al$_2$O$_3$ single crystals via pulsed laser deposition is determined in the spectral range from 0.03 eV to 4.5 eV by simultaneous modeling of spectroscopic ellipsometry and optical tra
Pulsed laser deposition, a non-equilibrium thin-film growth technique, was used to stabilize metastable tetragonal iron sulfide (FeS), the bulk state of which is known as a superconductor with a critical temperature of 4 K. Comprehensive experiments
The integration of ferromagnetic and ferroelectric materials into hybrid heterostructures yields multifunctional systems with improved or novel functionality. We here report on the structural, electronic and magnetic properties of the ferromagnetic d