ترغب بنشر مسار تعليمي؟ اضغط هنا

Voting Data-Driven Regression Learning for Discovery of Functional Materials and Applications to Two-Dimensional Ferroelectric Materials

96   0   0.0 ( 0 )
 نشر من قبل Xingyu Ma
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Regression machine learning is widely applied to predict various materials. However, insufficient materials data usually leads to a poor performance. Here, we develop a new voting data-driven method that could generally improve the performance of regression learning model for accurately predicting properties of materials. We apply it to investigate a large family (2135) of two-dimensional hexagonal binary compounds focusing on ferroelectric properties and find that the performance of the model for electric polarization is indeed greatly improved, where 38 stable ferroelectrics with out-of-plane polarization including 31 metals and 7 semiconductors are screened out. By an unsupervised learning, actionable information such as how the number and orbital radius of valence electrons, ionic polarizability, and electronegativity of constituent atoms affect polarization was extracted. Our voting data-driven method not only reduces the size of materials data for constructing a reliable learning model but also enables to make precise predictions for targeted functional materials.



قيم البحث

اقرأ أيضاً

The discovery of topological quantum states marks a new chapter in both condensed matter physics and materials sciences. By analogy to spin electronic system, topological concepts have been extended into phonons, boosting the birth of topological pho nonics (TPs). Here, we present a high-throughput screening and data-driven approach to compute and evaluate TPs among over 10,000 materials. We have clarified 5014 TP materials and classified them into single Weyl, high degenerate Weyl, and nodal-line (ring) TPs. Among them, three representative cases of TPs have been discussed in detail. Furthermore, we suggest 322 TP materials with potential clean nontrivial surface states, which are favorable for experimental characterizations. This work significantly increases the current library of TP materials, which enables an in-depth investigation of their structure-property relations and opens new avenues for future device design related to TPs.
Beyond the conventional trial-and-error method, machine learning offers a great opportunity to accelerate the discovery of functional materials, but still often suffers from difficulties such as limited materials data and unbalanced distribution of t arget property. Here, we propose the ab initio Bayesian active learning method that combines active learning and high-throughput ab initio calculations to accelerate prediction of desired functional materials with the ultrahigh efficiency and accuracy. We apply it as an instance to a large family (3,119) of two-dimensional hexagonal binary compounds with unbalanced materials property, and accurately screen out the materials with maximal electric polarization and proper photovoltaic band gaps, respectively, whereas the computational costs are significantly reduced by only calculating a few tenths of possible candidates in comparison to the random search. This approach shows enormous advantages for the cases with unbalanced distributions of target property. It can be readily applied to seek for a broad range of advanced materials.
The large-scale search for high-performing candidate 2D materials is limited to calculating a few simple descriptors, usually with first-principles density functional theory calculations. In this work, we alleviate this issue by extending and general izing crystal graph convolutional neural networks to systems with planar periodicity, and train an ensemble of models to predict thermodynamic, mechanical, and electronic properties. To demonstrate the utility of this approach, we carry out a screening of nearly 45,000 structures for two largely disjoint applications: namely, mechanically robust composites and photovoltaics. An analysis of the uncertainty associated with our methods indicates the ensemble of neural networks is well-calibrated and has errors comparable with those from accurate first-principles density functional theory calculations. The ensemble of models allows us to gauge the confidence of our predictions, and to find the candidates most likely to exhibit effective performance in their applications. Since the datasets used in our screening were combinatorically generated, we are also able to investigate, using an innovative method, structural and compositional design principles that impact the properties of the structures surveyed and which can act as a generative model basis for future material discovery through reverse engineering. Our approach allowed us to recover some well-accepted design principles: for instance, we find that hybrid organic-inorganic perovskites with lead and tin tend to be good candidates for solar cell applications.
Emergent functionalities of structural and topological defects in ferroelectric materials underpin an extremely broad spectrum of applications ranging from domain wall electronics to high dielectric and electromechanical responses. Many of these have been discovered and quantified via local scanning probe microscopy methods. However, the search for these functionalities has until now been based by either trial and error or using auxiliary information such as topography or domain wall structure to identify potential objects of interest based on the intuition of operator or preexisting hypotheses, with subsequent manual exploration. Here, we report the development and implementation of a machine learning framework that actively discovers relationships between local domain structure and polarization switching characteristics in ferroelectric materials encoded in the hysteresis loop. The latter and descriptors such as nucleation bias, coercive bias, hysteresis loop area, or more complex functionals of hysteresis loop shape and corresponding uncertainties are used to guide the discovery via automated piezoresponse force microscopy (PFM) and spectroscopy experiments. As such, this approach combines the power of machine learning methods to learn the correlative relationships between high dimensional data, and human-based physics insights encoded in the acquisition function. For ferroelectric, this automated workflow demonstrates that the discovery path and sampling points of on-field and off-field hysteresis loops are largely different, indicating the on-field and off-field hysteresis loops are dominated by different mechanisms. The proposed approach is universal and can be applied to a broad range of modern imaging and spectroscopy methods ranging from other scanning probe microscopy modalities to electron microscopy and chemical imaging.
183 - Zhi Ma , Yanan Ma , Fu Zheng 2017
In order to understand the physical hysteresis loops clearly, we constructed a novel model, which is combined with the electric field, the temperature, and the stress as one synthetically parameter. This model revealed the shape of hysteresis loop wa s determined by few variables in ferroelectric materials: the saturation of polarization, the coercive field, the electric susceptibility and the equivalent field. Comparison with experimental results revealed the model can retrace polarization versus electric field and temperature. As a applications of this model, the calculate formula of energy storage efficiency, the electrocaloric effect, and the P(E,T) function have also been included in this article.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا