ﻻ يوجد ملخص باللغة العربية
In spin-density-functional theory for noncollinear magnetic materials, the Kohn-Sham system features exchange-correlation (xc) scalar potentials and magnetic fields. The significance of the xc magnetic fields is not very well explored; in particular, they can give rise to local torques on the magnetization, which are absent in standard local and semilocal approximations. We obtain exact benchmark solutions for two electrons on four-site extended Hubbard lattices over a wide range of interaction strengths, and compare exact xc potentials and magnetic fields with approximations obtained from orbital-dependent xc functionals. The xc magnetic fields turn out to play an increasingly important role as systems becomes more and more correlated and the electrons begin to localize; the effects of the xc torques, however, remain relatively minor. The approximate xc functionals perform overall quite well, but tend to favor symmetry-broken solutions for strong interactions.
We train a neural network as the universal exchange-correlation functional of density-functional theory that simultaneously reproduces both the exact exchange-correlation energy and potential. This functional is extremely non-local, but retains the c
The ferroelectricity of the spiral magnets LiCu2O2 and LiCuVO4 was examined by calculating the electric polarizations of their spin spiral states on the basis of density functional theory with spin-orbit coupling. Our work unambiguously reveals that
The magnetic properties of the intermetallic compound FeAl are investigated using exact exchange density functional theory. This is implemented within a state of the art all-electron full potential method. We find that FeAl is magnetic with a moment
Starting from exact expression for the dynamical spin susceptibility in the time-dependent density functional theory a controversial issue about exchange interaction parameters and spin-wave excitation spectra of itinerant electron ferromagnets is re
I summarize Density Functional Theory (DFT) in a language familiar to quantum field theorists, and introduce several apparently novel ideas for constructing {it systematic} approximations for the density functional. I also note that, at least within