ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards Multi-Sense Cross-Lingual Alignment of Contextual Embeddings

306   0   0.0 ( 0 )
 نشر من قبل Linlin Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Cross-lingual word embeddings (CLWE) have been proven useful in many cross-lingual tasks. However, most existing approaches to learn CLWE including the ones with contextual embeddings are sense agnostic. In this work, we propose a novel framework to align contextual embeddings at the sense level by leveraging cross-lingual signal from bilingual dictionaries only. We operationalize our framework by first proposing a novel sense-aware cross entropy loss to model word senses explicitly. The monolingual ELMo and BERT models pretrained with our sense-aware cross entropy loss demonstrate significant performance improvement for word sense disambiguation tasks. We then propose a sense alignment objective on top of the sense-aware cross entropy loss for cross-lingual model pretraining, and pretrain cross-lingual models for several language pairs (English to German/Spanish/Japanese/Chinese). Compared with the best baseline results, our cross-lingual models achieve 0.52%, 2.09% and 1.29% average performance improvements on zero-shot cross-lingual NER, sentiment classification and XNLI tasks, respectively.

قيم البحث

اقرأ أيضاً

We introduce a novel method for multilingual transfer that utilizes deep contextual embeddings, pretrained in an unsupervised fashion. While contextual embeddings have been shown to yield richer representations of meaning compared to their static cou nterparts, aligning them poses a challenge due to their dynamic nature. To this end, we construct context-independent variants of the original monolingual spaces and utilize their mapping to derive an alignment for the context-dependent spaces. This mapping readily supports processing of a target language, improving transfer by context-aware embeddings. Our experimental results demonstrate the effectiveness of this approach for zero-shot and few-shot learning of dependency parsing. Specifically, our method consistently outperforms the previous state-of-the-art on 6 tested languages, yielding an improvement of 6.8 LAS points on average.
Cross-lingual word embeddings (CLWE) underlie many multilingual natural language processing systems, often through orthogonal transformations of pre-trained monolingual embeddings. However, orthogonal mapping only works on language pairs whose embedd ings are naturally isomorphic. For non-isomorphic pairs, our method (Iterative Normalization) transforms monolingual embeddings to make orthogonal alignment easier by simultaneously enforcing that (1) individual word vectors are unit length, and (2) each languages average vector is zero. Iterative Normalization consistently improves word translation accuracy of three CLWE methods, with the largest improvement observed on English-Japanese (from 2% to 44% test accuracy).
Generative adversarial networks (GANs) have succeeded in inducing cross-lingual word embeddings -- maps of matching words across languages -- without supervision. Despite these successes, GANs performance for the difficult case of distant languages i s still not satisfactory. These limitations have been explained by GANs incorrect assumption that source and target embedding spaces are related by a single linear mapping and are approximately isomorphic. We assume instead that, especially across distant languages, the mapping is only piece-wise linear, and propose a multi-adversarial learning method. This novel method induces the seed cross-lingual dictionary through multiple mappings, each induced to fit the mapping for one subspace. Our experiments on unsupervised bilingual lexicon induction show that this method improves performance over previous single-mapping methods, especially for distant languages.
190 - Zequn Sun , Wei Hu , Chengkai Li 2017
Entity alignment is the task of finding entities in two knowledge bases (KBs) that represent the same real-world object. When facing KBs in different natural languages, conventional cross-lingual entity alignment methods rely on machine translation t o eliminate the language barriers. These approaches often suffer from the uneven quality of translations between languages. While recent embedding-based techniques encode entities and relationships in KBs and do not need machine translation for cross-lingual entity alignment, a significant number of attributes remain largely unexplored. In this paper, we propose a joint attribute-preserving embedding model for cross-lingual entity alignment. It jointly embeds the structures of two KBs into a unified vector space and further refines it by leveraging attribute correlations in the KBs. Our experimental results on real-world datasets show that this approach significantly outperforms the state-of-the-art embedding approaches for cross-lingual entity alignment and could be complemented with methods based on machine translation.
212 - Yanpei Shi , Thomas Hain 2019
Embedding acoustic information into fixed length representations is of interest for a whole range of applications in speech and audio technology. Two novel unsupervised approaches to generate acoustic embeddings by modelling of acoustic context are p roposed. The first approach is a contextual joint factor synthesis encoder, where the encoder in an encoder/decoder framework is trained to extract joint factors from surrounding audio frames to best generate the target output. The second approach is a contextual joint factor analysis encoder, where the encoder is trained to analyse joint factors from the source signal that correlates best with the neighbouring audio. To evaluate the effectiveness of our approaches compared to prior work, two tasks are conducted -- phone classification and speaker recognition -- and test on different TIMIT data sets. Experimental results show that one of the proposed approaches outperforms phone classification baselines, yielding a classification accuracy of 74.1%. When using additional out-of-domain data for training, an additional 3% improvements can be obtained, for both for phone classification and speaker recognition tasks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا