ﻻ يوجد ملخص باللغة العربية
We introduce a novel method for multilingual transfer that utilizes deep contextual embeddings, pretrained in an unsupervised fashion. While contextual embeddings have been shown to yield richer representations of meaning compared to their static counterparts, aligning them poses a challenge due to their dynamic nature. To this end, we construct context-independent variants of the original monolingual spaces and utilize their mapping to derive an alignment for the context-dependent spaces. This mapping readily supports processing of a target language, improving transfer by context-aware embeddings. Our experimental results demonstrate the effectiveness of this approach for zero-shot and few-shot learning of dependency parsing. Specifically, our method consistently outperforms the previous state-of-the-art on 6 tested languages, yielding an improvement of 6.8 LAS points on average.
Linear embedding transformation has been shown to be effective for zero-shot cross-lingual transfer tasks and achieve surprisingly promising results. However, cross-lingual embedding space mapping is usually studied in static word-level embeddings, w
Cross-lingual word embeddings (CLWE) have been proven useful in many cross-lingual tasks. However, most existing approaches to learn CLWE including the ones with contextual embeddings are sense agnostic. In this work, we propose a novel framework to
Multilingual pre-trained models have achieved remarkable transfer performance by pre-trained on rich kinds of languages. Most of the models such as mBERT are pre-trained on unlabeled corpora. The static and contextual embeddings from the models could
This paper describes the system used in submission from SHANGHAITECH team to the IWPT 2021 Shared Task. Our system is a graph-based parser with the technique of Automated Concatenation of Embeddings (ACE). Because recent work found that better word r
Learning what to share between tasks has been a topic of great importance recently, as strategic sharing of knowledge has been shown to improve downstream task performance. This is particularly important for multilingual applications, as most languag